定完全平方公式(一)教案

定完全平方公式(一)教案

ID:8668128

大小:304.00 KB

页数:7页

时间:2018-04-04

定完全平方公式(一)教案_第1页
定完全平方公式(一)教案_第2页
定完全平方公式(一)教案_第3页
定完全平方公式(一)教案_第4页
定完全平方公式(一)教案_第5页
资源描述:

《定完全平方公式(一)教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《完全平方公式(一)》●课题§1.8.1完全平方公式(一)●教学目标(一)教学知识点1.完全平方公式的推导及其应用.2.完全平方公式的几何背景.(二)能力训练要求1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.2.重视学生对算理的理解,有意识地培养他们有条理的思考和表达能力.(三)情感与价值观要求1.了解数学的历史,激发学习数学兴趣.2.鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力.●教学重点1.完全平方公式的推导过程、结构特点、语言表述、几何解释.2.完全平方公式的应用.●教学难点1.完全平方公式的

2、推导及其几何解释.2.完全平方公式结构特点及其应用.●教学方法情境法、探究法、讨论法〖情境法〗创设情境来激发学生的学习兴趣,体会完全公式的几何背景〖探究法〗引导学生探究将一个小正方形扩充成一个大正方形后的面积〖讨论法〗通过探究讨论得出(a+b)2=a2+2ab+b2,并领会a、b可以表示什么?并能得出:(a-b)2=a2-2ab+b2●教具准备多媒体课件●教学过程Ⅰ.创设问题情景,引入新课[师]大家都知道我县被誉为当归之乡,今年当归又喜获丰收,李老伯今年为了增加收入,在原来边长为a米的正方形土豆田里,周围边长又增加了b米,形

3、成四块实验田,分别种植了当归、黄芪、油菜三种作物。请问,李老伯今年的土地种植面积总共是是多少?图1-25[师]你能用不同的方式表示试验田的面积吗?[生]改造后的试验田变成了边长为(a+b)的大正方形,因此,试验田的总面积应为(a+b)2.[生]也可以把试验田的总面积看成四部分的面积和即边长为a的正方形面积,边长为b的正方形的面积和两块长和宽分别为a和b的面积的和.所以试验田的总面积也可表示为a2+2ab+b2.[师]很好!同学们用不同的形式表示了这块试验田的总面积,进行比较,你发现了什么?[生]可以发现它们虽形式不同,但都表

4、示同一块试验田的面积,因此它们应该相等.即(a+b)2=a2+2ab+b2[师]我们这节课就来研究上面这个公式——完全平方公式.Ⅱ.讲授新课一.完全平方公式的推导[师]我们通过对比试验田的总面积得出了完全平方公式(a+b)2=a2+2ab+b2.其实,据有关资料表明,古埃及、古巴比伦、古印度和古代中国人也是通过类似的图形认识了这个公式.我们姑且把这种方法看作对完全平方公式的一个几何解释.能不能从代表运算的角度也能推导出这样的公式呢?[生]用多项式乘法法则可得(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a

5、2+ab+ab+b2=a2+2ab+b2所以(a+b)2=a2+2ab+b2(1)[师]上面的几何解释和代数推导各有什么利弊?[生]几何解释完全平方公式给我们以非常直观的认识,但几何解释(a+b)2=a2+2ab+b2,受到了条件限制:a>0且b>0;代数推导完全平方公式虽然不直观,但在推导的过程中,a,b可以是正数,可以是负数,零,也可以是单项式,多项式.二.看看它的特征1.首平方,末平方,乘积的两倍在中央.2.a,b是可以任意的数、字母、单项式、多项式。3.两数和的平方等于两数平方的和加上两数积的2倍。4.左右两边都是

6、“+”三.想一想(a-b)2等于什么?你是怎样想的.(同学们可先在自己的练习本上推导,教师巡视推导的情况,对较困难的学生以启示)[师]同学们分析得很有道理.接下来,我们来完成第(2)问.[生]也可利用多项式乘法法则,则(a-b)2=(a-b)(a-b)=a2-ab-ba+b2=a2-2ab+b2.[生]我是这样想的,因(a+b)2=a2+2ab+b2中的a、b可以是任意数或单项式、多项式.我们用“-b”代替公式中的“b”,利用上面的公式就可以得到(a-b)2=[a+(-b)]2.[师]这位同学的想法很好.因为他很留心我们表述

7、的每一句话的含义,你能继续沿着这个思路做下去吗?我们一块试一下.[师生共析](a-b)2=[a+(-b)]2=a2+2·a·(-b)+(-b)2↓↓↓↓↓↓(a+b)2=a2+2·a·b+b2=a2-2ab+b2.于是,我们得到又一个公式:(a-b)2=a2-2ab+b2(2)[师]你能用语言描述上述公式(1)、(2)吗?[生]公式(1)用语言描述为:两个数的和的平方等于这两个数的平方和与它们积的2倍的和;公式(2)用语言描述为:两个数的差的平方等于这两个数的平方和与它们积的2倍的差.这两个公式为完全平方公式.它们和平方差公

8、式一样可以使整式的运算简便.四.巩固,应用1.强化认识<真金不怕火炼>判断下列结论是否正确(1)(x+y)2=x2-2xy+y2(2)(x–y)2=x2–xy+y2(3)(2+x)2=2+4x+x2(4)(x–1)2=x2–2x(5)(x+2y)2=x2+4xy+4y2(6)(4x–3y)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。