高一数学人教b版必修3学案:3.2 古典概型

高一数学人教b版必修3学案:3.2 古典概型

ID:8634975

大小:143.00 KB

页数:7页

时间:2018-04-03

高一数学人教b版必修3学案:3.2 古典概型_第1页
高一数学人教b版必修3学案:3.2 古典概型_第2页
高一数学人教b版必修3学案:3.2 古典概型_第3页
高一数学人教b版必修3学案:3.2 古典概型_第4页
高一数学人教b版必修3学案:3.2 古典概型_第5页
资源描述:

《高一数学人教b版必修3学案:3.2 古典概型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.2 古典概型【入门向导】“下一个赢家就是你!”这句响亮的具有极大诱惑性的话是大英帝国彩票的广告词,买一张大英帝国彩票的诱惑有多大呢?只要花上1英镑,就有可能获得2200万英镑!(1英镑约相当于13.7元人民币)但一张彩票的中奖机会有多少呢?让我们以大英帝国彩票为例来计算一下.大英帝国彩票的规则是49选6,即在1至49的49个号码中选6个号码.在每一轮,有一个专门的摇奖机随机摇出6个标有数字的小球,如果6个小球的数字都被一个人选中了,那他就获得了头等奖.可是,当我们计算一下在49个数字中随意组合其中6个数字的方法有多少种时,我们会吓一大跳:从49个数中选6个数的组合有

2、13983816种方法!这就是说,假如只买一张彩票,六个号码全对的机会大约是一千四百万分之一,这个数大约相当于澳大利亚的任何一个普通人当上总理的机会.如果一个人每星期买50张彩票,那他赢得一次大奖的时间约为5000年;即使每星期买1000张彩票,也大致需要270年才中头奖!这几乎是单个人力不可为的.1.定义一次试验连同其中可能出现的每一个结果称为一个基本事件,它们是试验中不能再分的最简单的随机事件,一次试验中只能出现一个基本事件,其他事件可以用它们表示.2.基本事件的特点①任何两个基本事件是互斥的.在一次试验中,只可能出现一种结果,即只产生一个基本事件,如掷骰子试验中,

3、一次试验只能出现一个点数,任何两个点数不可能在一次试验中同时发生.②任何事件(除不可能事件)都可以表示成基本事件的和.相对于基本事件而言,由两个以上的基本事件组成的随机事件称为复杂事件.在解决有关古典概型问题中,要认识到基本事件不能再分,不同的基本事件不可能同时发生.判断基本事件时,一定要对照思考其特征,并将所有可能的基本事件一一列举出来.例1 连续掷3枚硬币,观察落地后这3枚硬币正面向上还是反面向上.(1)写出这个试验的基本事件;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?解 (1)这个试验的基本事件是:(正,正,正),(正

4、,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).1.古典概型的定义如果试验中出现如下特征:(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性).具有以上两个特征的概率模型称为古典概率模型,简称古典概型.2.古典概型必须具备两个条件:(1)有限性(即指试验中所有可能发生的基本事件只有有限个);(2)等可能性(即指每个基本事件发生的可能性相等).

5、判断一个事件是否为古典概型,同学们只要紧紧抓住这两个条件,即可得出正确结论.例2 下列概率模型:(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.其中是古典概型的是________.解析 (1)不是古典概型,因为在区间[1,10]中有无穷多个实数,取出一个实数有无穷多种结果,即有无穷多个基本事件,不满足古典概型定义中“基本事件只有有限个”的条件.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,不

6、满足古典概型定义中“每个基本事件出现的可能性相等”的条件.(3)是古典概型,因为在试验中所有可能出现的结果的个数有限(100个),而且每个整数被抽到的可能性相等.故填(3).答案 (3)例 任意投掷两枚骰子,计算:(1)“出现的点数相同”的概率;(2)“出现的点数之和为奇数”的概率;(3)“出现的点数之和为偶数”的概率.错解 (1)点数相同是指同为1点,2点,…,6点,其中之一的概率是.(2)点数之和为奇数,可取3、5、7、9、11共5种,所以“出现的点数之和为奇数”的概率为=.(3)点数之和为偶数,可取2、4、6、8、10、12共6种,所以“点数之和为偶数”的概率为.

7、正解 (1)任意投掷两枚骰子,可看成等可能事件,其结果可表示为数组(i,j)(i,j=1,2,…,6),其中两个数i,j分别表示两枚骰子出现的点数,共有6×6=36种结果,其中点数相同的数组为(i,j)(i=j=1,2,…,6)共有6种结果,故“出现的点数相同”的概率为=.(2)由于每个骰子上有奇、偶数各3个,而按第1、第2个骰子的点数顺次写时,有(奇,奇)、(奇,偶)、(偶,奇)、(偶,偶)这四种等可能结果,所以“其和为奇数”的概率为P==.(3)由于骰子各有3个偶数,3个奇数,因此“点数之和为偶数”、“点数之和为奇数”这两个结果等可能

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。