欢迎来到天天文库
浏览记录
ID:83636145
大小:2.31 MB
页数:14页
时间:2024-09-04
《重难点6-2 空间几何体的交线与截面问题(8题型+满分技巧+限时检测)(原卷版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
热点6-1空间几何体的交线与截面问题空间几何体的交线与截面问题既是高考数学的热点,也是难点,往往在高考的选填压轴题中出现,难度较大。此类题目综合考察考生的空间想象能力和逻辑推理能力,处理这类问题的基本思路是借助空间点线面的位置关系和相应的定理,将空间问题平面化。【题型1作出空间几何体的截面】满分技巧1、作截面应遵循的三个原则:(1)在同一平面上的两点可引直线;(2)凡是相交的直线都要画出它们的交点;(3)凡是相交的平面都要画出它们的交线;2、作交线的方法有如下两种:(1)利用基本事实3作直线;(2)利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线。【例1】(2024·全国·高三专题练习)如图,正方体的棱长为8,,,分别是,,的中点.(1)画出过点,,的平面与平面的交线;(2)设平面,求的长.【变式1-1】(2024·甘肃·高三武威第六中学校联考开学考试)如图,正方体的棱长为学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 分别为棱的中点.(1)请在正方体的表面完整作出过点的截面,并写出作图过程;(不用证明)(2)求点到平面的距离.【变式1-2】(2023·全国·高三专题练习)如图,直四棱柱的底面为正方形,为的中点.(1)请在直四棱柱中,画出经过三点的截面并写出作法(无需证明).(2)求截面的面积.【变式1-3】(2023·贵州铜仁·校联考模拟预测)如图,已知在正三棱柱中,,三棱柱外接球半径为,且点分别为棱,的中点.(1)过点作三棱柱截面,求截面图形的周长;(2)求平面与平面的所成角的余弦值.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 【题型2判断截面多边形的形状】满分技巧判断截面多边形形状时需要注意以下几点:1、截面与几何体表面相交,交线不会超过几何体表面个数。2、不会与同一个表面有两条交线。3、与一对平行表面相交,交线平行(不一定等长)4、截面截内切球或者外接球时,区分与面相切和与棱相切之间的关系【例2】(2024·广东深圳·高三统考期末)(多选)在正方体中,用垂直于的平面截此正方体,则所得截面可能是()A.三角形B.四边形C.五边形D.六边形【变式2-1】(2023·江西宜春·高三宜丰中学校考阶段练习)在长方体中,、,、分别为棱、的中点,点在对角线上,且,过点、、作一个截面,该截面的形状为()A.三角形B.四边形C.五边形D.六边形【变式2-2】(2024·陕西安康·安康中学校联考模拟预测)如图,在正方体中,分别为棱的中点,过三点作该正方体的截面,则()A.该截面是四边形B.平面C.平面平面D.该截面与棱的交点是棱的一个三等分点【变式2-3】(2024·浙江宁波·高三统考期末)(多选)已知直三棱柱,,学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 ,,,,平面EFG与直三棱柱相交形成的截面为,则()A.存在正实数,,,使得截面为等边三角形B.存在正实数,,,使得截面为平行四边形C.当,时,截面为五边形D.当,,时,截面为梯形【题型3求解截面多边形的周长】满分技巧求解截面多边形的周长有两个思路:(1)利用多面体展开图进行求解;(2)在各个表面确定交线,分别利用解三角形进行求解。【例3】(2024·四川成都·高三树德中学校考期末)如图,已知正方体的棱长为为的中点,过点作与直线垂直的平面,则平面截正方体的截面的周长为()A.B.C.D.【变式3-1】(2024·全国·模拟预测)如图,在棱长为2的正方体中,E为棱BC的中点,用过点,E,的平面截正方体,则截面周长为()A.B.9C.D.【变式3-2】(2023·全国·高三对口高考)如图,在直三棱柱中,,,,学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 ,为线段上的一动点,则过三点的平面截该三棱柱所得截面的最小周长为.【变式3-3】(2023·河南·校联考模拟预测)在正四棱柱中,,点分别是,的中点,则过点的平面截正四棱柱所得截面多边形的周长为()【变式3-4】(2024·河北廊坊·高三文安县第一中学校联考期末)如图所示,正四棱台中,上底面边长为3,下底面边长为6,体积为,点在上且满足,过点的平面与平面平行,且与正四棱台各面相交得到截面多边形,则该截面多边形的周长为()A.B.C.D.【题型4求解截面多边形的面积】满分技巧求解截面多边形的面积问题的步骤:(1)通过解三角形求得截面多边形各边的长度;(2)判断多边形的形状是否规则,若为规则图形可直接使用面积公式求解;否则可通过切割法将多边形分为多个三角形求解。【例4】(2023·四川南充·统考一模)如图,正方体的棱长为2,E,F分别为,的中点,则平面截正方体所得的截面面积为()学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 A.B.C.9D.18【变式4-1】(2023·四川成都·高三石室中学校考期中)如图,在三棱柱ABC-A1B1C1中,四边形AA1B1B是矩形,D是棱CC1的中点,CC1=AC=4,,AB=3,,过点D作平面平面,则平面截三棱柱ABC-A1B1C1所得截面面积为()A.B.C.D.【变式4-2】(2023·安徽·高三合肥一中校联考阶段练习)已知正三棱锥底面边长为1,侧棱长为2,过棱的中点作与该棱垂直的截面分别交,于点,,则截面的面积为()A.B.C.D.【变式4-3】(2023·山西大同·高三大同一中校考阶段练习)已知正方体的棱长为3,点分别在棱上,且满足为底面的中心,过作截面,则所得截面的面积为.【变式4-4】(2023·江西·高三校联考阶段练习)已知棱长为4的正四面体,用所有与点A,B,C,D距离均相等的平面截该四面体,则所有截面的面积和为()A.B.C.D.【题型5截面分割几何体的体积问题】学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 满分技巧截面分割后的几何体易出现不规则的几何体,对此往往采用“切割法”或“补形法”进行体积的求解。【例5】(2023·河北衡水·衡水中学校考一模)已知正三棱柱,过底边的平面与上底面交于线段,若截面将三棱柱分成了体积相等的两部分,则()A.B.C.D.【变式5-1】(2024·重庆·高三重庆巴蜀中学校考阶段练习)已知正方体,棱的中点分别为,平面截正方体得两个几何体,体积分别记为,则()A.B.C.D.【变式5-2】(2024·浙江湖州·高三统考期末)在正四棱锥中,底面的边长为为正三角形,点分别在上,且,若过点的截面交于点,则四棱锥的体积是()A.B.C.D.【变式5-3】(2023·江苏扬州·高邮中学校考模拟预测)如图,在三棱柱中,,是棱AB上一点,若平面把三棱柱分成体积比为的两部分,则()A.1B.C.D.【变式5-4】(2023·全国·高三专题练习)在如图所示的几何体中,,平面,,,,.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 (1)证明:平面;(2)过点作一平行于平面的截面,画出该截面(不用说明理由),并求夹在该截面与平面之间的几何体的体积.【题型6截面最值的相关问题】满分技巧截面最值问题的计算,主要由以下三种方法:1、极限法:通过假设动点运动至两端,计算最值(需注意判断是否单调);2、坐标法:通过建系设坐标,构造对应的函数进行求解;3、化归法:通过图形转化,把立体图形转化为平面图形,寻找平面图形中的最值计算。【例6】(2024·四川·校联考模拟预测)设正方体的棱长为1,与直线垂直的平面截该正方体所得的截面多边形为,则的面积的最大值为()A.B.C.D.【变式6-1】(2024·江西赣州·南康中学校联考模拟预测)已知直三棱柱中,,过点的平面分别交棱AB,AC于点D,E,若直线与平面所成角为,则截面三角形面积的最小值为.【变式6-2】(2024·山东烟台·高三统考期末)如图,在直三棱柱中,,,则该三棱柱外接球的表面积为;若点为线段的中点,点为线段上一动点,则平面截三棱柱所得截面面积的最大值为.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 【变式6-3】(2024·广西·模拟预测)在三棱锥中,平面,,,,点为棱上一点,过点作三棱锥的截面,使截面平行于直线和,当该截面面积取得最大值时,()A.B.C.D.【变式6-4】(2023·广西·高三统考阶段练习)在棱长为2的正方体内,放入一个以为铀线的圆柱,且圆柱的底面所在平面截正方体所得的截面为三角形,则该圆柱体积的最大值为.【题型7球的截面问题】满分技巧求解球的截面问题的要点:(1)确定球心与半径;(2)寻找作出并计算截面与球心的距离;(3)充分利用“球心做弦的垂线,垂足是弦中点”这个性质;(4)强调弦的中点,不一定是几何体线段的中点。【例7】(2024·江西赣州·南康中学校联考一模)球的两个平行截面面积分别为和,球心到这两个截面的距离之差等于1,则球的直径为()A.3B.4C.5D.6【变式7-1】(2024·陕西榆林·统考一模)已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,为上的一点,且,过点作球的截面,则所得的截面面积最小的圆的半径为()A.B.C.D.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 【变式7-2】(2024·河北邢台·高三统考期末)《九章算术》中将四个面都是直角三角形的四面体称为鳖臑.如图,在鳖臑中,平面,,,以为球心,为半径的球面与侧面的交线长为()A.B.C.D.【变式7-3】(2023·湖北荆州·高三沙市中学校考阶段练习)三棱锥的四个顶点都在表面积为的球O上,点A在平面的射影是线段的中点,,则平面被球O截得的截面面积为()A.B.C.D.【变式7-4】(2024·山东滨州·高三统考期末)已知直四棱柱的所有棱长均为4,,以A为球心,为半径的球面与侧面的交线长为.【题型8圆锥的截面问题】【例8】(2023·全国·模拟预测)某圆锥的母线长为4,轴截面是顶角为120°的等腰三角形,过该圆锥的两条母线作圆锥的截面,当截面面积最大时,圆锥底面圆的圆心到此截面的距离为()A.4B.2C.D.【变式8-1】(2024·浙江宁波·高三统考期末)已知高为2的圆锥内接于球O,球O的体积为,设圆锥顶点为P,平面为经过圆锥顶点的平面,且与直线所成角为,设平面截球O和圆锥所得的截面面积分别为,,则.【变式8-2】(2024·广东中山·中山纪念中学校考二模)已知球的体积为,高为1的圆锥内接于球O,经过圆锥顶点的平面截球和圆锥所得的截面面积分别为,若,则学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 【变式8-3】(2023·全国·高三专题练习)(多选)图,在圆锥中,已知高.底面圆的半径为2,为母线的中点,根据圆锥曲线的定义,下列三个图中的截面边界曲线分别为圆、椭圆、双曲线,则下面四个命题中正确的有()A.圆锥的体积为B.圆的面积为C.椭圆的长轴长为D.双曲线两渐近线的夹角【变式8-4】(2023·河北·河北衡水中学校考模拟预测)如图,用一垂直于某条母线的平面截一顶角正弦值为的圆锥,截口曲线是椭圆,顶点A到平面的距离为3.(1)求椭圆的离心率;(2)已知P在椭圆上运动且不与长轴两端点重合,椭圆的两焦点为,,证明:二面角的大小小于.(建议用时:60分钟)1.(2024·全国·高三专题练习)已知OA为球O的半径,过OA的中点M且垂直OA的平面截球得到圆M,若圆M的面积为,则球O的表面积为()A.B.C.D.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 2.(2024·全国·模拟预测)在正方体中,E,F分别为棱,的中点,过直线EF的平面截该正方体外接球所得的截面面积的最小值为,最大值为,则()A.B.C.D.3.(2023·四川宜宾·高二四川省兴文第二中学校校考开学考试)如图,在三棱柱中,过的截面与AC交于点D,与BC交于点E(D,E都不与C重合),若该截面将三棱柱分成体积之比为的两部分,则()A.B.C.D.4.(2024·四川·校联考一模)设正方体的棱长为1,与直线垂直的平面截该正方体所得的截面多边形为M.则下列结论正确的是().A.M必为三角形B.M可以是四边形C.M的周长没有最大值D.M的面积存在最大值5.(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥中,两两垂直,且,以为球心,为半径作球,则球面与底面的交线长度的和为()A.B.C.D.6.(2023·河北沧州·高三泊头市第一中学校联考阶段练习)已知正方体的棱长为,为的中点,为棱上异于端点的动点,若平面截该正方体所得的截面为五边形,则线段的取值范围是()A.B.C.D.7.(2024·河南南阳·高三统考期末)(多选)用一个平面去截正方体,关于截面的说法,正确的有()A.截面有可能是三角形,并且有可能是正三角形学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 B.截面有可能是四边形,并且有可能是正方形C.截面有可能是五边形,并且有可能是正五边形D.截面有可能是六边形,并且有可能是正六边形8.(2023·辽宁朝阳·高三校联考期中)(多选)如图,有一个正四面体形状的木块,其棱长为a.现准备将该木块锯开,则下列关于截面的说法中正确的是()A.过棱AC的截面中,截面面积的最小值为B.若过棱AC的截面与棱BD(不含端点)交于点P,则的最小值为C.若该木块的截面为平行四边形,则该截面面积的最大值为D.与该木块各个顶点的距离都相等的截面有7个9.(2023·山东潍坊·统考模拟预测)正三棱台中,,,点,分别为棱,的中点,若过点,,作截面,则截面与上底面的交线长为.10.(2023·重庆·高三校联考阶段练习)如图,已知正方体的棱长为4,,,分別是棱,,的中点,平面截正方体的截面面积为.11.(2023·广西河池·校联考模拟预测)已知四棱锥中,底面为直角梯形,平面,,,,,为中点,过,,的平面截四棱锥所得的截面为.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司 (1)若与棱交于点,画出截面,保留作图痕迹(不用说明理由),并证明.(2)求多面体的体积.12.(2023·云南昆明·高三昆明一中校考阶段练习)如图,直三棱柱中,点D,E分别为棱的中点,.(1)设过A,D,E三点的平面交于F,求的值;(2)设H在线段上,当的长度最小时,求点H到平面的距离.学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司学科网(北京)股份有限公司
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处