E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown

E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown

ID:81816646

大小:5.80 MB

页数:11页

时间:2023-07-21

上传者:U-14522
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第1页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第2页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第3页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第4页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第5页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第6页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第7页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第8页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第9页
E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown_第10页
资源描述:

《E ff ect of Surface Roughness on Hydrodynamic Characteristics of an Impinging Droplet - Singh et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleEffectofSurfaceRoughnessonHydrodynamicCharacteristicsofanImpingingDropletRajeevKumarSingh,*PeterD.Hodgson,NiladriSen,andSubratDasCiteThis:Langmuir2021,37,3038−3048ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Theinfluenceofsurfaceroughnessandimpactenergyonthehydrodynamicbehaviorofwaterdropletsimpingingupondryandrigidsurfacesofknownroughnesshasbeeninvestigatedexperimentally.Theinfluenceofthesetwoparametersonthedropletmaximumspreadingdiameter,sliplengthduringdropletrecoil,dynamiccontactangle,contactanglehysteresis,andapparentcontactangleofdropletsatresthasbeendetermined.Basedonthequantitativeassessment,acorrelationforthemaximumspreadingdiameterintermsofthenondimensionalparameter(We/Oh)andsurfaceroughnessratio(Ra/do)wasderived.Weproposetousesurfaceroughness“Ra”ratherthanusingthecontactangleforcorrelationascontactanglescannotbeknownapriori,whereassurfaceroughnesscanbedeterminedbeforehand.Thewettingstateofadropletdependsonthecombinedinfluenceofdropletimpactenergyandsurfaceroughness.Whileincreasingimpactenergyincreasesthespreading,highersurfaceroughnessresiststhedropletfromspreading.LowimpactenergyandasmoothersurfacetendtowardtheCassie−Baxterwettingstate,whereashighimpactenergyandroughsurfacespropelthedroplettowardtheWenzelstateofwetting.■INTRODUCTIONAsignificantamountofresearchworkhasbeendevotedtotheLiquiddropletsimpinginguponsurfacesareubiquitousaroundpredictionofmaximumspreadβmaxforavarietyofconditions,as18,1915,16,20,21usinnature,suchasraindropsfallingondifferentsurfacesorinisevidencedinthebooksandreviewarticles.Tableourdailylivesasmedicinalsprays,aerosols,andshowers.TheS1(seeTableS1intheSupportingInformation)summarizestransmission,impingement,andinteractionofdropletswithchronologicallyacomprehensivelistofresearchstudiessurfacesandthelifetimeofspeech/respiratorydropletscarryingcontainingmacroscopicmodelsforthepredictionofdroplettheSARS-Cov-2virusisconsideredoneofthemostcriticalspreadthathavebeenpublishedinthelast50years.1,2TheearlystudiesofJones,22Madejski,23andCollingsetal.24factorsforthespreadofCovid-19pandemic.Theresultantwettingfromthedroplet−surfaceinteractionsisfocusedonpredictingthemaximumspreaddiameterofmetallic3−5splatsforrapidsolidificationapplications.JonesintheirmodelDownloadedviaUNIVOFCAPETOWNonMay14,2021at15:46:34(UTC).acentralthemeinmanyapplicationssuchasspraycooling,6,789spraycoating,spraycombustion,inkjetprinting,3D-neglectedsurfacetensioneffectstoarriveatacorrelationofβmaxprinting,10,11ceramics,12andmetals.13∝Re1/8.MadejskiconsideredthelaminarfluidflowinthesplatThespreadingbehaviorofdropletsondrysurfacesisandneglectedsurfacewettabilitytoperformtheenergybalanceSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.governedbyabalancebetweentheinertial,viscous,andsurfacebetweenthekineticandpotentialenergyandthefrictionallossestensionforces.Thedroplet’sspreadingcharacteristicscanhaveinthesystem.Energywasconsideredlostthroughviscousmarkedlydifferentoutcomesduetosurfaceroughnessanddissipationandsurfacetensioneffects.InMadejski’smodel,surfacewettabilitythroughthecontactangleitmakeswiththewhenthespreadingisarrestedbythesurfacetensionforces,the14,15surface.Thedropletspreadsintoapancake-shapedlamellamaximumspreadingdiametercorrelatesasβ∝We1/2.Onthemaxaftertheimpingementontoadrysurface.Apartofthedroplet’sotherhand,whentheextentofspreadingisgovernedbythekineticenergyislosttoviscousdissipationduringspreading.viscousdissipationofenergy,themaximumspreadingscalesasSimultaneously,theotherportionofitisconvertedintosurfaceβ∝Re1/5.Collingsetal.neglectedtheviscousdissipationand16,17maxenergyforcreatingalargersurfaceareaoftheplanarlamella.includedthecorrectionforthesurfacewettabilityeffectthroughTheextentofthisspreadofthedropletischaracterizedbythe“spreadfactor”,whichistheratioofthespreadingdiametertothedroplet’sinitialdiameterbeforeimpact.ThemaximumReceived:November3,2020spread(βmax=dmax/do)andthicknessareconsideredtobetheRevised:February19,2021mostimportantfactorsfordropletimpingementhydro-Published:March2,202115,16dynamicsandareessentialintheevaluationofthespreadingbehaviorofdropletsinmanyinterfacialfluidflowsandheattransferapplications.©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c031933038Langmuir2021,37,3038−3048

1Langmuirpubs.acs.org/LangmuirArticle25theequilibriumcontactangle.ChandraandAvedisianthescalinganalysisorempiricalorsemiempiricalapproaches.consideredbothviscousenergydissipationandsurfacetensionThesecorrelationsscaleβmaxtoanon-dimensionalgroup,ReWe1/2,knownasthe“impactparameter”,whichisrepresentedwithcorrectionforsurfacewettabilityeffectsthroughthe215,17,37−40advancingcontactangleondropletsimpactingtheheatedas(ReOh)or(We/Oh).26surface.BennettandPoulikakosperformedacriticalassess-SincemostofthescalingmodelsweredevelopedforalimitedmentoftheearliertheoreticalmodelsbyJones,Madejski,rangeofWeberandReynoldsnumbers,theycannotbeappliedCollingsetal.,andChandraandAvedisian.Theymodifiedasageneralmodelforabroaderrangeoftheimpactregime.Madejski’smodeltoincorporatethesurfacewettabilityeffectSomeauthorshaveusedanapproximationfunctionthatthroughthecontactangleinthesurfaceenergyterm.Maoetprovidesasmoothcrossoverbetweentheviscousandcapillary2736al.appliedthestagnationpointflowandboundarylayerregimes.Eggersetal.basedthiscrossoverfunctiononthedevelopmentinthespreadinglamella,wheretheboundarylayerenergyconservationapproachratherthanthemomentum41thicknessesforlowviscosityandhighviscosityfluidswerebalance.Laanetal.utilizedEggers’concepttodevelopa28correlationapplicableforbothNewtonianandnon-Newtonianconsideredseparately.Healyetal.incorporatedacorrection14basedonthecontactangletothepreviouslydevelopedfluids.Leeetal.improvedfurtheronLaanetal.’smodelbyKurabayashi−Yang’smodelformulti-componentfueldroplets.incorporatingacorrectionfordroplets’spreadwithzeroimpact29velocity.AfewauthorshavealsoconsideredotheraspectsofPasandideh-Fardconsideredthedroplet’sshapeatthe14,40maximumspreadtothatofaflattenedcylindricaldiskanddropletspreadingsuchastheeffectofsurfaceroughness,4214,39consideredtheboundarylayerthicknesstoestimateviscoustexturedsurface,andwidelyvaryingviscosity.dissipation.TheyusedtheadvancingcontactangletoimproveMostofthemodelsorcorrelationslistedinTableS1(in30SupportingInformation)anddiscussedearliershowgooduponChandraandAvedisian’smodel.UkiweandKwokfurtherimprovedPasandideh-Fard’smodelbyconsideringtheagreementoverlimitedrangesintheirexperimentaldata.Thereflatteneddisc’slateralsidesforcalculationofsurfaceenergyatisageneralagreementinchoosingcharacteristicdimensionlessthemaximumspread.Theyarguedinfavorofusingannumbers,We,Re,orOh,forspreading.However,thereisno31universalacceptancefortheappropriatechoiceofthecharacter-equilibriumcontactangle.Later,Vadilloetal.revertedtothedynamiccontactangleintheirmodificationoverUkiwe’sisticcontactanglethatshouldbeemployedinthemodeltomodel.Wildeman32developedcorrelationsforthemaximumincorporatesurfacewettabilityeffects.Someauthorsarguein26,30spreadforthefreeslipaswellasnoslipconditionsusingafavoroftheequilibriumcontactangle,whileotherspropose25,29numericalmodelthatconsidereddissipationintheshearusingthedynamiccontactangleforcorrelations.boundarylayeratthesolidsurface.Forrealsurfaces,Young’sequilibriumcontactangledoesnotThesemacroscopicmodels,basedonphysicalarguments,exist.Ontheotherhand,thedynamiccontactanglecannotbeapplyeithertheenergyconservationormomentumconserva-knownapriorianddependsonthesurfacecharacteristicsandtionapproach.Theyestablishabalancebetweenthecapillaryexperimentalconditions.Surfaceroughnessisanindependentandviscousforcesafterimpacttotheinertialandsurfaceenergyparameterthatisnotaffectedbyexperimentalconditionsandforcesbeforeimpact.Whilethecalculationfortheinitialkineticcanbedeterminedbeforehand.Itchangesthewettingandsurfaceenergyhasbeenthesameforallthesemodels,theycharacteristicsofasurfaceandsignificantlyinfluencesthehavedifferedinevaluatingsurfaceenergyandviscousdissipationdynamiccontactangleduringthedroplet’sinteractionwiththeatthemaximumspread.Differencesaroseinthecomputationofsurface.Theuseofsurfaceroughnessasaparametertosurfaceenergyowingtoambiguityinthechoiceofthecontactincorporatethecorrelation’scontactangleeffecthasrarelybeen40angleconsideredorintheassumptionofthedropletshapeattheconsidered.Whileafewauthorshavementionedsurface14,27maximumspread.Variationintheviscousdissipationtermaroseroughness,thetreatmentismostlyqualitative.Quantitativefromthedifferentvelocityprofileassumptionsinthespreadingtreatmentofsurfaceroughnesshasmostlybeenignored.film.TheseearliermodelsareinaccurateastheydonotaccountInthepresentwork,ratherthanusingthedynamiccontactfortheedgeeffectsofthespreadinglamellaandtheenergylostangle,surfaceroughnesswasconsideredasaparametertototherim’sviscousboundarylayer.incorporatethesurfacecharacteristicsinthecorrelationdirectly.Intheviscousregime,utilizingtheenergyconservationQuantitativeassessmentoftheeffectofsurfaceroughnessontheapproach,mostoftheauthorshavefoundthatthemaximummaximumspreadofdropletsandotherdropletparametershasspread(β)isproportionalto(Re1/5).23,26,33Intheotherbeencarriedoutbyvaryingtheroughnessofsurfacespreparedmaxregime,mainlydominatedbytheinertialforce,thestrongfromthesameparentmaterial.LowtomoderateWeberinterplaybetweentheinertiaandcapillaryforceswithsomenumbers(We<15)wereemployedtoavoidsplashingandcorrectionsforviscousdissipationandsurfacewettabilityaffectsdisintegratingthedropletsontheroughsurfaces.themaximumspreadfactor.Scalinganalysisforbalancebetweenthekineticandsurfaceenergyinthisregimesuggeststhatβmax∝■MATERIALSANDMETHODSWe1/2forlargeWebernumbers.UsingthemassandmomentumSamplePreparationandSurfaceCharacterization.Five34balance,Clanetetal.developedanalternatemodeltosuggestdifferentsteelsamplesofsize(45mm×25mm×10mm)ofaveragethatβ∝We1/4.Theyproposedan“impactfactor”,roughness,Ra=0.2,0.4,0.8,1.1,and1.3μm,werepreparedbygrindingmax(WeRe−4/5),todistinguishbetweenviscousandcapillaryandpolishingoneofthebroadfacesandusedinthisstudy.Theseregimes.Formodelsbasedonthefilmthicknessofthespreadingsampleswerecutandpreparedfromthesameparentmaterial.Forlamella,analternate“impactfactor”,(P=WeRe−2/5),hasbeensmoothersurface,aluminaoxide-basedpolishwasused,whereasfortheroughersurfaces,asiliconacrbideabrasivewasusedforpolishing.Caredevised,whichreconcilesmostoftheexperimentaldataforthe33,35,36wastakentokeepthescratchesalignedalongthelengthofthesampleinertia-dominatedregime.duringpolishing.ThesampleswerecharacterizedforsurfaceroughnessSeveralotherauthorshavedevelopedcorrelationsfortheparametersusinganOlympusLEXTOLS5000industriallaserconfocalmaximumspreadofdropletswithWeberandReynoldsnumbersmicroscope.Table1showsthecharacteristicroughnessparametersof43ortheircombinationforawiderangeofimpactregimesusingthesamplesmeasuredaccordingtothestandardISO4287:1997.3039https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

2Langmuirpubs.acs.org/LangmuirArticleTable1.MeasuredRoughnessParametersoftheSamplessurfaceidentificationsampleidentificationno.(designatedroughnessparameter,S1S2S3S4S5Ra)(0.2μm)(0.4μm)(0.8μm)(1.1μm)(1.3μm)peaksurfaceroughness0.701.002.644.205.26(Rp)meansurface0.240.370.801.121.28roughness(Ra)rootmeansquare0.290.470.991.381.63surfaceroughness(Rms)meanwidthofsurface6.687.6810.5010.3817.11roughness(Rsm)roughnessratiothe2.002.072.082.312.91Figure2.Experimentalsetupfordropletimpingementstudy.ratiooftheactualsurfacetoprojectedsurfacearea(Φ)by∼3°sothatthedroplet’sreflectiononthesamplesurfacecanbe44capturedclearly.FourdifferentnozzleswereusedforcreatingTheroughnessprofileandthedegreeofunevennessonthedropletsofdifferentsizes.smoothestsurfaceareshowninFigure1.ThefigureclearlyshowsImageAcquisitionandAnalysis.Thesampleswereplacedonthemajorlyunidirectionalpolishingscratcheswithspatial/localvariationinholderwiththeirpolishedsurfacefacingtowardthenozzle.Beforeeachthesurfaceroughness,althoughtheaverageroughnessiswithintheexperiment,asnapshotofatransparentmicro-rulerfilmhavingarequiredrange.rectangulargridofresolution10−4m×10−4mwascapturedinthefocalExperimentalSetup.Figure2showsthearrangementofallplanetoconvertpixelresolutionintoactuallengths.Waterwasthensignificantcomponentsoftheexperimentalsetup.Thesetupconsistedforcedtotheconicaldispenserthroughamicroliterpump−syringeofanadjustablesampleholderforplacingthesample.Amicroliterattachmentfordropletgenerationatthenozzletipundertheinfluencepump(HarvardApparatusPhDUltra)fittedwithasyringewasofgravityandsurfacetension.Oncethedropletsattainedacertainsize,connectedtoaconicalliquiddispenserusingaPVCtubefordroplettheydetachedfromthenozzletipandfellonthesurface.Afewinitialgeneration.Attheotherendofthedispenser,flat-tippedstainless-steeldropletsweretrappedtoensurethatsubsequentdropletswerebubble-nozzlesofdifferentgaugescanbeattached.Thedistancebetweenthefree.Sharpimagesofthedropletsfallingandinteractingwiththesurfacenozzletipandthesamplesurfacewasadjustabletoimpartdifferentwerecapturedwithanimageresolutionof256×256pixelsat12,000impactvelocitiestothedroplets.fps.EachexperimentwasrepeatedthreetofourtimestoensureThesamplesurfacewashorizontallyalignedwithahigh-lumensrepeatabilityandeachcapturedroughly4000framestillthedropletsdiffusedlight-emittingdiodelightononesideandahigh-speeddigitalcametorest.Aftereveryrun,thesamplesurfacewaswipedcleanwithcamera(PhantomV7CineMagIII,VisionResearch)ontheother.Theethanolandacetonetoavoidsurfacecontamination.Theinitialimagesdiffusedlighthelpedinthedroplet’sbacklitilluminationwithasharpofdropletsfallingtowardthesurfacewereusedtocalculatetheirsize,focusandreducedthereflectionoflightfromthedroplet.Imagesphericity,andimpactvelocity.ThedistancefromthenozzletiptothemagnificationwasachievedbyusingaNikonED4FMicroNikkor-samplesurfacewasvariedtoimpartdifferentimpactvelocitiestothe200mm1:4Dlensmountedonthecamera.Thecameraaxiswastilteddroplets.UsingnozzlesofdifferentinnerdiametersenabledthecreationFigure1.CharacteristicsofthesteelsurfaceofroughnessRa=0.2μm.(a)3Dsurfacemap;(b)opticalmicrograph(mag.50×);(c)surfacetextureprofile;and(d)linearroughnessprofilealongtheevaluationlength.3040https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

3Langmuirpubs.acs.org/LangmuirArticleofdropletsofdifferentsizes.Thetotalexperimentaldesignconsistedofdimensionlesstime(t*=tvo/do)duringtheimpactandspreading.4(dropletsizes)×4(dropheights)×5(surfaceroughness).ThefigureshowsthatthecontactlinegetspinnedbythesecondorthirdTheproprietaryimage-sequencefileswereconvertedintotheAudiooscillation,butthedropletcontinuestooscillateoveraprolongedVisualInterleave(*.avi)formatandprocessedusinganopen-sourceduration.Definitionsofdifferentdropletparameterssuchasthe45imageanalysissoftwareFiji(ImageJ2)byconvertingthemintothemaximumspread,finalspread,sliplength,recoilheight,andfirstbinaryformat.Apixelanalysisapproachwasappliedtogenerateoscillationcyclethathavebeenusedforthequantitativeanalysisarequantitativeinformationondropletparameterslikeshapeandsize,alsomarkedonthefigure.Eachexperimentwasconductedatleastthreevelocity,spreadingdiameter,dynamiccontactanglevariation,recoiltimestoensuretherepeatabilityunderthesameconditions.The40,46height,andoscillationcharacteristicsinrealtime.Imagescalesweremethodemployedreproduceddatawithgoodrepeatabilitywithin±1%adjustedusingthecalibrationrulerrecordedpreviouslyduringforthespreadandwithin±5%forthecontactangle.experimentalruns.Thedropletreleaseheightwasvariedas5,10,15,and20×10−3mto■RESULTSANDDISCUSSIONvarythedropletimpactvelocity,vo.ThefallingdropletsarenotThedroplethydrodynamicbehavioronroughsurfaceswithaperfectlysphericalbutareovoidorslightlyflat-bottomedspheres.lowtomoderateimpactnumberispresentedhereunderthreeHowever,thesphericityofthedroplets,definedasφ=min(dh/dv,dv/d),wasdeterminedtobehigherthan0.9.Thedropdiameterwasmajorsections:(A)droplethydrodynamicbehavior,(B)droplethapproximatedasd=(d2d)1/3.15,47Theuseofnozzlesofdifferentspreadingcharacteristics,and(C)contactanglebehavior.Aohvboresresultedindropletsizesof2.1,2.6,2.9,and3.2×10−3m.Thequalitativedescriptionofdropletshapeevolutionisfollowedbydroplets’radiiaresmallerthanthecapillarylengthforwaterdroplets,aquantitativeanalysisofthetwomostsignificantparameters,−3themaximumdropletspreadanddynamiccontactangle.a==σρw/2g.48×10m,indicatingthatgravityeffectscanbeneglectedanddropletscanbeconsideredasspherical.Further,theinfluenceofsurfaceroughnessonthesetwoDropletimpactvelocitieswerecalculatedbytrackingthedropletparametersisalsoanalyzed.centroidfor10framesjustbeforeimpact.ThelinearfitslopetotheDropletHydrodynamicsatRoomTemperature.Figuredropletcentroid’sheightabovethesurfaceplottedagainsttimegives4showsthecontactanglevariationanddropletspreadbehaviorthedroplet’simpactvelocity.Areasonablyaccurateestimationofthe48impactvelocity,varyingwithin±5%ofthetheoreticalimpactvelocity,wasachievedbythemethodemployed.TheexperimentaldesignoffourdifferentdropsizesandfourdifferentfreefallheightsprovidedanimpactregimeoftheWebernumbervaryingas0.6≤We≤13andtheReynoldsnumbervaryingas370≤Re≤1740.Increasingthefallheightto25×10−3mledtooccasionalsplashingofthelargestsizeddroplets.Hence,allexperimentswererestrictedtoamaximumheightof20×10−3m,whichcorrespondstoamaximumWe=13.ContactAngle,DropletHeight,andDropletSpreadMeasurement.Thedropletcontactanglewiththesurfacewas49evaluatedusingaJavaplugin“DropSnake”thatcanbeusedwithFijisoftware.Thismethodaccuratelypositionsthetriplecontactpointonthesurface.ItutilizesedgedetectionbygrayscaleanalysisofthedropletimagestofitpiecewisecontinuouspolynomialB-splinestodetermine50thedropletboundary.ThepluginallowsareasonablyaccurateFigure4.Contactangleanddimensionlessdropletspreadvsestimationofthecontactanglefordropletsatequilibriumorweaknon-dimensionlesstimeinthefirstoscillationcycle(d=2.6×10−3m,oequilibriumconditionssuchasthoseindeformedconditions.TheleftWe=11,andRa=0.2μm).andrightcontactangleswereaveragedtotakecareofanyasymmetryinthedropletshapeduringdeformation.Otherdropletparameterssuchasduringthefirstcycleofoscillation.Thedropletshapeevolutions,thecontactspreadingdiameteratthebaselineandthedropletheightafterimpact,aresuperimposedatdifferentinstancesoftimetowerealsoextractedfromthesameimage.illustratetheshapesequenceduringthedropletimpactwithFigure3plotsthedimensionlessspread(β=d/do),dimensionlessdropheight(γ=h/do),andthecontactangleθagainsttherespecttothecontactangleandspreadfactor.Thedropletsundergodistinctphasesduringspreadingduetoinertial,surfacetension,andviscousforces.AtlowWeberandOhnesorgenumbers,theeffectofimpactvelocityisnegligible,andthedropletbehaviorcorrespondsto51theinviscidandcapillary-drivenspreadingregime.Theunbalancedcapillaryforceonroughsurfacesinfluencesthespreadingatthecontactline.Thisforcearisesfromthedifferencebetweentheequilibriumanddeformeddropletshapeandisresistedbyinertiaandfrictionalforces.Afterthedroplettouchesthesurface,theinertialandtheunbalancedYoung’sforcesatthecontactlinepullsitradiallyoutward,spreadingasadisk.Duringthisstage,thedroplet’sinitialenergyisconsumedtocreatealargersurfaceareaandispartlylostinovercomingtheresistancetospreading.Whilespreading,thecontactanglesubtendedbythemovingfrontiscalledtheadvancingcontactangle(θadv).Afterthedroplethasreacheditsmaximumspread,thecontactlinestopsmoving.SurfacetensionforcesthenpullthedropletbackforcingthefluidinthedropletcentertoriseFigure3.Contactangle,dimensionlessdropletheight,andspreadvsupward.Thisretractionofthedroplettowarditscenterisdimensionlesstime(d=2.6×10−3m,We=11,andR=0.2μm).termedtherecoilingstage.Duringthisstage,thesurfacetensionoa3041https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

4Langmuirpubs.acs.org/LangmuirArticleFigure5.Transientbehaviorofadropletonroughsurfacesat(a)We<2and(b)We=11(dropletsized=2.6×10−3m).oforcespropelthedroplettominimizeitssurfaceenergyandconstantβmax)beforeitstartsrecoilingback.Inthisphase,theattainanequilibriumstate.Duringthisretractionphase,thedropletbehaviorisgovernedbytheinterplayofinertial,surface,contactanglesubtendedbythedropletonthesurfaceiscalledviscous,andcapillaryforces,andthespreadinglawthatistherecedingcontactangle(θrec).Onreachingthemaximumapplicableinthekinematicphaseisnolongervalid.recoilheight,thedropletcollapsesagain.ThisprocesscontinuesAttheendofthespreadingphase,dropletsentertherecoilforawhilewiththedropletpinnedonthesurfaceandoscillatingphasewiththegrowinginfluenceofsurfacetensionandaboutitsequilibriumposition.Thespreadingandinertialwettability.Thesurfacetensionforcepullsthedropletbackoscillationsaredampedgraduallyasthedropletmovestowardtowarditsequilibriumposition,whilesurfaceroughnesstheequilibriumpositionatrest.preventsitfromrecoiling.Astheyrecoil,thedroplets’fluidDropletSpreadingCharacteristics.Dropletsfromonemassispulledinwardandupward,leadingtoaloweringofthenozzlearediscussedhereasarepresentativeanalysis.Figure5contactangle,(θrec).Thedifferencebetweenthemaximumdepictsthetemporalevolutionofthespreadingofwaterdropletsspreadβmaxandthefirstminimaβminafterthemaximumspreadofsize(d=2.6×10−3m)afterimpactingondrysurfacesofistermedasthesliplength,β=β−β.Fordropletswithoslipmaxminvariousroughnessvalues(Ra).Thebehaviorofotherdroplethigherimpactenergy,thesliplengthishighenoughtoovershootsizesissimilar.Fordropletswithasimilarimpactenergy,thetheequilibriumpositionwhileretracting.Thus,thedropletspreaddecreasesassurfaceroughnessincreases.spreadsoutagaintoregaintheequilibriumposition,causingittoDropletdeformationcanbedividedintofourdistinctphases:oscillateuntilitattainsitsequilibriumposition.Thisovershootis47kinematic,spreading,recoilorrelaxation,andequilibrium.InevidencedinFigure5bforspreadingonthesmoothestsurfacetheinitialkinematicphase,thelamellaisyettoemerge(Ra=0.2μm).underneathdroplets(β<1).ThespreadingbehaviordepictsaAtlowWebernumbers(We<2),dropletsexhibitspreadpower-lawrelationship,thatisβ∝(t*)a,wheretheexponent“a”withoutanysharpchangeindropletretractionduringitsvariesbetween0.28and0.50fordifferentexperimentalrecedingphase,whereasforhigherWebernumbers(We=11),conditions.Thispower-lawrelationshipisconsistentwiththatthedropletexhibitssharpretractionaftertheinitialimpact.Ata47reportedbyRiobooetal.,whoreportedanexponentvaryinglowWebernumber(We<2,Figure5a),thedroplet’sinertialbetween0.45and0.57fordropletsimpactingonsmoothenergyislow.Capillaryforcesaremoredominant,counteringsurfaces.Inthepresentstudy,theexponent’slowervaluemaybetheinfluenceofinertiaeffectively,andpulldropletsoutward.AtattributedtothesurfaceroughnessthatpreventsthedropletslowOhnesorgenumbers,theresistancetospreadingisgovernedfromspreading.Inertialforcedominatesoverthesurfaceforcebyinertialforces,whicharealreadylow.Hence,dropletsdonotandcapillaryforceinthisphase,andthespreadingbehaviorcanexhibitrecoil(orverynegligiblerecoil)attheendofthebeeasilydescribedusingtheimpactvelocityanddropletspreadingphase.Insteadofrecoiling,dropletscontinuetodiameter.Surfaceroughnesshasanegligibleinfluenceonthespreadfurtherastheyslowlyeaseintoanequilibriumposition.spreadingrate,indicatedbynearlycoincidingdatapointsintheThus,droplets’wettingeffectwithlowWeberandOhnesorgekinematicphaseforallsurfaceroughnessvalues.numbersisgovernedmorebythecapillaryforces.ThisdynamicInthesubsequentspreadingphase,lamellaeemergefromthewettabilityofroughsurfaces,atlowWebernumbers,iscrucialas38baseofthedroplets.Theinfluenceofsurfaceroughnessanditcontrolsthethinfilmformationonthesurface.Thedynamicimpactenergystartsbecomingsignificant,asindicatedbythewettingphenomenonwasabsentinothercaseswhereinertialseparationofcurvesfordifferentsurfaceroughnessvalues.Theandcapillaryforcesareofasimilarorderofmagnitude.Insuchinertiaofthedropletscontrolsthespreadingoflamellaeandthecases,theovershootintheinitialspreadingphasecausesthedroplet’sdeformation.Whilelamellaegrowoutward,thedroplet’sspreadtoretracttowarditsfinalequilibriumposition.droplet’sinertiaisprogressivelyweakenedbycapillary,retardingAftercompletingtherecoilorrelaxationphase,dropletsenterviscous,andfrictionalforces.Bythetimelamellaeachievetheirintotheequilibriumphasewherespreadingiscontrolledmore51maximumspread,βmax,thedroplet’skineticenergyiscompletelybytheviscousforcesthantheinertialforces.Dropletspreadingexhausted,andthecontactlinevelocitydropstozero.Theisoverdampedtowardthefinalspreadandremainsnearlydimensionlesstime,t*max,toreachthemaximumspreadisslightlyconstant,whileoscillationsinthedropletcontactanglegraduallyhigherfordropletswithhigherimpactenergy,thoughtheytakedamptowarditsequilibriumvalueatrest.Ideally,thefinallesstimetoreachthemaximumspreadinabsoluteterms.Thus,spreadforalldropletsonthesamesurfaceshouldbethesame.dropletswithhigherimpactenergyspreadfaster.ForabriefHowever,variationinthefinalspreadcanbeattributedtoperiod,thecontactlineremainspinnedatthisposition(nearlysurfaceheterogeneityduetoroughness.3042https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

5Langmuirpubs.acs.org/LangmuirArticleFigure6.Influenceof(We/Oh)onthemaximumspreadfactorfordropletsofsize(a)d=2.1×10−3m,(b)d=2.6×10−3m,(c)d=2.9×10−3m,oooand(d)d=3.2×10−3m.oMaximumSpreadingDiameter.Themaximumspreadingdiameterofdropletsisoneofthemostsignificantparametersforahostofindustrialapplicationssuchasforresolutionininkjetprinting,cooling,orcoatingefficiencyofsprays.Correlationformaximumspreadingintermsofthenondimensionalgroup(We/Oh)andsurfaceroughness(R*a=Ra/do)wasdeveloped.Likesomeofthecorrelationsbyother15,37,38,40authors,thenondimensionalgroupWe/Ohwasusedasitrepresentstheratioofspreadingtoresistingforcesandinvolvesallkinematicandmaterialproperties.Figure6indicatesthevariationinthemaximumspreadingfactorwithrespecttotheWe/Ohnumber.Themeasuredmaximumspreadfactordepictsanincreasingtrendwithapower-lawrelationshiptoWe/Ohandcanbecorrelatedasβmax=A(We/Oh)m,wheretheexponent“m”isapproximately0.10and“A”isthecoefficientrepresentingthesurfacecharacteristics.Figure7.EffectofsurfaceroughnessonthedropletmaximumspreadTheupperandlowerboundsofthedataarealsoplottedonthefactor.samegraphandhavethesameexponent.Variationinsurfaceroughnesscausesthecoefficient“A”tovarybetween−6andexponentvaluesuggeststhatsurfaceroughnesshasaweak+9%fromthemean.Increasingsurfaceroughnessresistsinfluenceonthespreadingbehaviorofthedroplet.dropletsfromspreading,whichresultsinlowervaluesofCombiningtheparameters(We/Oh)andthesurfacemaximumspread.Whencorrelatedintermsofimpactvelocity,1/5roughnessRa*,auniversalcorrelationforthemaximumthemaximumspreadfactorscalesasβmax∝(vo),whichisspreadinghasbeendevelopedthroughregressionanalysisand34similartothatreportedbyClanetetal.forwaterdropletsexpressedasimpactingonapartiallywettablesurface.Theeffectofthenondimensionalsurfaceroughness0.1iy−0.065β=0.39ijjWeyzzjjjjRazzzzparameter(R*a=Ra/do)onthemaximumspreadingfactorformaxjOhzjdzdropletsimpactinguponthesurfaceisdepictedinFigure7.k{ko{(1)Increasingsurfaceroughnesscausesalowerspreadindroplets.Comparedtoexperimentalresults,thepredictedmaximumForimpactsatsimilarWebernumbers,themaximumspreadisspreadingfromtheequationprovidedareasonablygoodfit,asloweronroughersurfaces.ThefiguresuggeststhatsurfaceshowninFigure8.Acomparisonoftheproposedcorrelationroughnesshasaninversepower-lawrelationshipwiththewiththatreportedintheliteratureisshowninFigure9.maximumspreadfactor.Fittingthepower-lawrelationshipβmaxAsisevidencedfromTable2,mostofthesecorrelationswere∝(R*)−n,theexponent“n”isapproximately0.065.Thelowdevelopedforthespreadingofwaterdropletsonsmootha3043https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

6Langmuirpubs.acs.org/LangmuirArticleFigure10ashowstheinfluenceofimpactenergyonthesliplengthofdropletsimpactingsurfaceswithdifferentroughnessvalues.Incontrast,Figure10bshowstheinfluenceofsurfaceroughnessonthesliplengthforvaryingWebernumbers.Fromthefigures,thefollowingobservationsaremade:•Onsurfacesofsimilarroughness,thesliplengthincreaseswithanincreaseinimpactenergy.Theinfluenceofimpactenergyismoreinthecaseofsmoothersurfaces.•Forsimilarimpactenergy,thesliplengthishigheronsmoothersurfacesofRa=0.2μmandRa=0.4μm.Onroughersurfaces(Ra=0.8,1.1,and1.3μm),alldropletshavesimilarslips,asdepictedbythetrendlines’clubbing.ThisindicatesthatcapillaryandfrictionalforcesaredominantenoughtonullifytheinfluenceofimpactenergyFigure8.Comparisonofallexperimentaldataofthemaximum(seeFigure10a).spreadingfactorwithpredictionusingtheproposedcorrelation.•Athigherimpactenergy(We∼10−12),theinfluenceofsurfaceroughnessisdominant.Thesliplengthfallssharplywithincreasingsurfaceroughness.Atlowerimpactenergy(We∼1−2),thecapillaryandfrictionalforcesaredominantenoughtonegatethelowinertialenergyforces.ThisleadstoanearlysimilarsliplengthforthedropletsatlowerWebernumbers,asdepictedbytheflattrendlineinFigure10b.DynamicContactAngleBehavior.Thetemporalevolutionofthedynamiccontactanglefor2.6×10−3mwaterdropletsafterimpactingthesurfacesatdifferentWebernumbersisshowninFigure11.Foraperfectsphericaldroplet,thecontactangleatimpactshouldideallystartfrom180°However,theimpactingdropletsarenotperfectlyspherical,andcapturinganimageatthesameinstanceofimpactisdifficult.Forallexperimentsinthisstudy,temporalcurvesofthecontactanglejustafterimpactstartfromavalue∼150°,droppingsharplytowardadynamicadvancingFigure9.Comparisonoftheproposedcorrelationofthemaximumcontactangleof∼120°asthedropletspreadingslowsdown.spreadingfactorwithpublishedcorrelationsintheliterature.Oncethedropletreachesitsmaximumspread,thebulkoffluidhasalreadybeenpushedoutwardtowardthecontactline.Atmaximumspread,thecontactanglecyclesthroughdynamic40surfaces,exceptfortheworkbyTangetal.,whichisforwateradvancingtotherecedingcontactangle,undergoingthecontactdropletsonsteelsurfacesofknownroughness.Whilethereisanglehysteresisperiod.Oncethecontactangledropsbelowthesignificantvariationbetweenthemaximumspreadingfactorrecedingcontactangle,thecontactlinestartsreceding,andthepredictedwithcorrelationsforasmoothsurfaceandthedynamiccontactangledecreasestowardaminimum.Afterthat,correlationdevelopedinthepresentwork,thepredictedresultsitstartsincreasingagaininthenextspreadingphase.Thiscycling40haveaclosermatchwiththatofTangetal.Hence,itcanbeofthecontactangle,betweenthemaximaandminima,continuesconcludedthatthecorrelationdevelopedinthisworkgivesawithbulkfluidoscillation,whichgraduallydampsovertime.goodestimateofmaximumspreadduringtheimpactofwaterEachsubsequentmaximaandminimaissmallerthanthedropletsonrealsurfacesatlowtomoderateWebernumbers.previous,graduallytaperingtowardtheequilibriumapparentSlipLength.Afterthedropletshaveachievedtheircontactangleatrest.maximumspread,thecontactlineslipsbackduringdropletInthefirstcycleofoscillation,dropletsexhibitapeculiar46,52,53recoil(seeFigure3forthedefinitionofthesliplength).Thestick−slipbehavior,wherethecontactlineacceleratesextentoftheslipβslipdependsontheimpactenergyandsurfacesharplywhileretracting,followedbyaquickincreaseintheroughness.contactangle.Thestick−slipbehaviorwasobservedinmostofTable2.CorrelationsoftheMaximumSpreadingFactorUsedinComparisonauthorscorrelationsremarks370.166Scheller&Bousfield(1995)βmax=0.61(We/Oh)waterdropletsonsmoothpolystyrenefilmandglass380.14Bayer&Megaridis(2006)βmax=0.72(We/Oh)waterdropletsonsmoothmirrorpolishedsteelsurface150.178Liangetal.(2019)βmax=0.505(We/Oh)waterdroplet,smoothstainless-steelsurface400.31Tangetal.(2017)βmax=0.11(We/Oh)waterdroplet,stainlesssteelsurfaceofroughness0.4−1.6μmÄÅÅÉÑÑ1/2Pasandideh-Fardetal.(1996)29ÅÅÅÅWe+12ÑÑÑÑwaterdropletsonasmoothandpolishedsteelsurface.θaistheadvancingcontactβmax=ÅÅÅÅ3(1−+cos)θ4(WeRe−0.5)ÑÑÑÑangleÇaÖ3044https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

7Langmuirpubs.acs.org/LangmuirArticleFigure10.Effectof(a)impactenergyand(b)surfaceroughnessonthesliplengthduringdropletspreading.Figure11.DynamicContactAngleevolutionfor2.6mmdropletonroughsurfacesat(a)We<2and(b)We=11.Figure12.Contactanglehysteresisfordropletmotiononroughsurfaceswithdifferentimpactenergies(d=2.6×10−3m),(a)R=0.4μmand(b)oaWe=8.thecaseswithroughsurfacesandforalltheWebernumbersμm)anddifferentroughnessvalues(forWe=8),respectively.studiedhere.Thisstick−slipbehaviorofthecontactlineisDatapointsinthepositivevelocityregionarefortheadvancingattributedtothepinninganddepinningofthecontactlineapparentcontactanglewhendropletsarespreading.Duringduringitsmotiononthesurfaceandcontactangleoscillation.initialspreading,thecontactlinevelocityishigherthantheThedynamiccontactanglevariationplaysanessentialroleintheimpactvelocity,steadilydeceleratinguptothecontactlinedroplet’spost-spreadingdynamicsandeventuallyinfluencesthearrest.Onthelinedepictingzerocontactlinevelocity,theupperdroplet’sfinalspreadatrest.endofdatapointscorrespondstotheadvancingapparentContactAngleHysteresis.Figure12plotsthedynamiccontactangleatthestartofthehysteresisperiod.Incontrast,theapparentcontactanglesduringthefirstoscillationcycleforlowerendofdatapointscorrespondstotherecedingapparentdropletsofdiameter2.6×10−3m.Thecontactlinevelocitywascontactangleattheendofthehysteresisperiod.Duringcontactnondimensionalizedasv*cl=vcl/vo.Figure12a,breferstotheanglehysteresis,thecontactlinevelocityiszeroanddropletscontactanglehysteresisatdifferentWebernumbers(forRa=0.4cyclethroughaseriesofcontactanglevalues,betweenthe3045https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

8Langmuirpubs.acs.org/LangmuirArticleFigure13.Effectof(a)impactenergyand(b)surfaceroughnessontheapparentcontactangleofdropletsatrest.apparentadvancingandrecedingcontactangles.OncetheFigure13a,bindicatesthattheinfluenceofsurfaceroughnesscontactlinestartsreceding(negativecontactlinevelocity),theontheapparentcontactangleatrestisamplifiedwhendropletscontactangledropsfurthertowardaminimum,beforeitcyclesimpactthesurfacewithhigherenergy.Theincreasingimpactupagaininthenextoscillationcycle.energycausesthedroplettospreadmore,whereasthehigherForthecasepresentedinFigure12,theadvancingapparentsurfaceroughnesspreventsthedropletfromreceding.Thiscontactanglestartsbetween130and140°,steadilydecreasingtoresultsinalargerfinalspread.Tomaintainthedroplets’volume∼120°atthestartofthecontactanglehysteresis.Attheendofwiththelargercontactfootprint,alowerapparentcontactanglethehysteresis,thecontactlinestartsrecedingoncetheapparentatrestissubtended.Thus,dropletsinteractingwithroughrecedingcontactangleisaround∼65°.ThedynamiccontactsurfacesandimpactingathigherWebernumbersformathinnerangledecreasesfurtheruntilaminimumisreached.Similarfilm,whichcanhavepotentialbenefitsinapplicationswhereabehaviorwasobservedinotherexperimentalrunsaswell.Thethinfilmisrequired.rateofchangeintherecedingcontactangletothecontactlinevelocitywashigherfordropletswithhigherimpactenergy,■CONCLUSIONSwhereasthespanofthecontactanglehysteresis,thatis,θadv−Theimpactenergyandsurfaceroughnesssignificantlyinfluenceθrec,washigheronroughersurfaces.Thespanisalsohigherforthedropletinteractionondry,rigid,androughsurfaces.dropletswithhigherimpactenergy(We=11).ThisvariationinHowever,surfaceroughnesshaslittleornoinfluenceduringthedropletretractiondynamicscanbeattributedmoretotheinitialspreadingbehavior.Itsdominancestartsincreasingasthedroplet’sapparentrecedingcontactangleduringtherecoildropletnearsitsmaximumspread,duringthecontactanglephase.hysteresisphase,andwhenthedropletretracts.RoughsurfacesApparentContactAngleatRest.Theapparentcontactincreasethedroplet’scontactlinepinning,whichleadstoanglesubtendedbydropletsrestingonthesurfaceisimportantrestricteddropletmotionafterinitialspreading.Forimpactataformanyapplicationssinceitinfluencesdroplets’spreadingandlowWebernumber,theimpactenergyisinsufficienttospreadthethicknessoftheliquidfilmformed.Theinfluenceofimpactthedropletonroughsurfaces.Instead,itistheunbalancedenergyandsurfaceroughnessondroplets’apparentcontactcapillaryforcethatpullsthedropletoutwardtowarditsfinalangleatrestwereanalyzed.equilibriumposition.ThisistrueforallthesurfaceroughnessFigure13adepictstheinfluenceofimpactenergyonthevaluesstudiedhere,andtheapparentcontactangleatrestapparentcontactangleatrestforthesmoothest(Ra=0.2μm)subtendedbythedropletis∼90±5°atlowWebernumbersandtheroughest(Ra=1.3μm)surfaceemployedinthisstudy.(We∼1−2).TheslightvariationinthecontactangletowardaFigure13bshowstheinfluenceofdimensionlesssurfacehighervalueisattributedtothemovingcontactline’spinningroughnessontheapparentcontactangleatrestforthelowesteffectwhileovercomingthelocalsurfaceroughnessvariationandthehighestWebernumbersstudied.Thereissomescatterinwhenthedropletispulledoutward.Ontheotherhand,whentheexperimentaldatawhicharoseduetolocalsurfaceroughnessdropletsimpactwithhigherenergy,thedroplet’sinitialspreadisinhomogeneities,especiallyatlowerWebernumbers.Itismorethanitsequilibriumspreadandthedroplettriestoretract.evidentfromFigure13athatimpactenergyhasalesserinfluenceDuringthedroplet’sretraction,thecontactlineispreventedontheapparentcontactangleatrestonthesmoothersurface.fromslippingbackonroughsurfaces.TheextentoftheslipisTheapparentcontactangleatrestis∼90±5°onthesmoothestloweronroughersurfacesduetolargesurfacefrictionalforcessurface(Ra=0.2μm).Ontheotherhand,theapparentcontactpreventingitsretraction.Thiseventuallyleadstoalargerangleatrestshowsadecreasingtrendwithincreasingimpactfootprintofdroplets.Thedroplet’svolumeismaintainedbyenergyfortheroughestsurface.Similarly,Figure13bshowsthatsubtendingalowercontactangle.Thelargerfootprint,lowertheapparentcontactangleatrestdoesnotchangeappreciablycontactangle,andpinnedcontactlinetendtostretchthewithachangeinsurfaceroughnesswhendropletsimpactatlowdropletsoverroughsurfaces.Thus,intherangeofsurfaceWebernumbers.However,athigherWebernumbers,theroughnessstudiedhere,thesurfaces’wettabilityimprovedwithapparentcontactangleatrestshowsadecreasingtrendastheincreasedroughnessforthedropletimpactingwithhigherdimensionlesssurfaceroughnessincreases.Theapparentenergy.contactangleatrestdropstovaluesaslowas∼70°fordropletsThisbehaviorofroughsurfacescanbeattributedtothe5455impactingtheroughestsurfacewithahighimpactenergy.Cassie−BaxterorWenzelstateofwetting,dependingonthe3046https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

9Langmuirpubs.acs.org/LangmuirArticlesurfacetexture,thatistheheightofpeaks,thewidth,andvalleys’projectadministration,funding,conceptualization,writingdepth.IntheCassie−Baxterregime,thedropletscontactthereviewandediting,andsupervision.PeterD.Hodgson:projectsurfaceonlyatpeakswithairpocketstrappedinthevalleys.Onadministration,conceptualization,writingfinalreviewandtheotherhand,intheWenzelregime,dropletsfollowtheediting,andsupervision.Themanuscriptwaswrittenthroughsurface’scontour,makingintimatecontactwithitatallpointsthecontributionsofallauthors.Allauthorshaveapprovedtheandfloodfillingthevalleys.Atlowimpactenergy,surfacefinalversionofthemanuscript.roughnesshadlittleornoinfluenceonthedroplets’finalcontactNotesangle.Thissignifiesthatdroplets’initialenergyfailstodisplaceTheauthorsdeclarenocompetingfinancialinterest.theairpocketstrappedinthevalleys,causingthedropletstofloatontheairpocketstrappedinthevalleysofsurface■roughnesstouchingthesurfaceonlyatthepeaks.ThisleadstoACKNOWLEDGMENTStheCassie−BaxterwettingregimewherethesurfacetendsTheauthorsaregratefultothemanagementofSteelAuthorityoftowardhydrophobicitywithincreasingsurfaceroughness.WithIndiaLtd.,theResearch&DevelopmentCentreforIronandincreasingimpactenergy,theinitialenergyisstrongenoughtoSteel,India,andDeakinUniversity,Australia,forthefinancialdisplacetheairtrappedinthevalleys.ThedropletthenhugsthesupporttopursuethisprojectundertheHigherDegreebycontourofthesurface,floodfillingthevalleysandleadingtotheResearchProgramandthepermissiontopublishthispaper.increasedinfluenceofsurfaceroughness.Thesurfaceroughnessthenresiststhecontactlinemotion,leadingtoahigher■ABBREVIATIONSadvancingcontactangleθadvandlowerrecedingcontactangleWeWebernumberθrec,thatisincreasedcontactanglehysteresis.ThewettingOhOhnesorgenumberbehaviorisintheWenzelstatewiththesurfaceshowinghigherReReynoldsnumberhydrophobicityduringthespreadingstage(asθadv>90°)andddiameterofthedroplet(m)higherhydrophilicityduringtherecedingstage(asθrec<90°).gaccelerationduetogravity(ms−2)Thus,onnon-idealroughsurfaces,bothCassie−Baxterandβspreadfactor(d/do)Wenzelstatesmaycoexist.Themoredominantstatedependsσsurfacetensionbetweenwaterandair(N/m)uponthelocalsurfaceroughnessvariationandthedroplets’−3ρdensityofwater(kgm)impactenergy.vvelocity(m/s)■hheightofthedropletalongthecentralaxis(m)ASSOCIATEDCONTENTθcontactangle(deg)*sıSupportingInformationttime(s)TheSupportingInformationisavailablefreeofchargeathttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c03193.■SUBSCRIPTSCollectionofthemostcommonlyreferredcorrelationsforoatthetimeoftheimpactthemaximumspreadingdiameterasreportedinthemaxmaximumpublishedliteratureoverthelast50years(PDF)clcontactlineffinal■AUTHORINFORMATIONhalongthehorizontalaxisCorrespondingAuthorvalongtheverticalaxisRajeevKumarSingh−SchoolofEngineering,FacultyofScience,Engineering,andBuiltEnvironment,Deakin■REFERENCESUniversity,Geelong,Victoria3216,Australia;orcid.org/(1)Stadnytskyi,V.;Bax,C.E.;Bax,A.;Anfinrud,P.TheAirborne0000-0003-0000-8531;Phone:+91-8986880324;LifetimeofSmallSpeechDropletsandTheirPotentialImportanceinEmail:singhrajeev@sail.inSARS-CoV-2Transmission.Proc.Natl.Acad.Sci.U.S.A.2020,117,11875−11877.Authors(2)Dhand,R.;Li,J.CoughsandSneezes:TheirRoleinTransmissionPeterD.Hodgson−InstituteofFrontierMaterials,DeakinofRespiratoryViralInfections,IncludingSARS-CoV-2.Am.J.Respir.University,Geelong,Victoria3216,AustraliaCrit.CareMed.2020,202,651−659.NiladriSen−ResearchandDevelopmentCentreforIron&(3)Ciofalo,M.;Caronia,A.;DiLiberto,M.;Puleo,S.TheNukiyamaSteel,SteelAuthorityofIndiaLimited,Ranchi,JharkhandCurveinWaterSprayCooling:ItsDerivationfromTemperature−834002,IndiaTimeHistoriesandItsDependenceontheQuantitiesThatCharacterizeDropImpact.Int.J.HeatMassTransfer2007,50,SubratDas−SchoolofEngineering,FacultyofScience,4948−4966.Engineering,andBuiltEnvironment,DeakinUniversity,(4)Breitenbach,J.;Roisman,I.V.;Tropea,C.FromDropImpactGeelong,Victoria3216,AustraliaPhysicstoSprayCoolingModels:ACriticalReview.Exp.Fluids2018,Completecontactinformationisavailableat:59,55.https://pubs.acs.org/10.1021/acs.langmuir.0c03193(5)Sarmadian,A.;Dunne,J.F.;Long,C.A.;Jose,J.T.;Pirault,J.-P.;Rouaud,C.HeatFluxCorrelationModelsforSprayEvaporativeCoolingofVibratingSurfacesintheNucleateBoilingRegion.Int.J.AuthorContributionsHeatMassTransfer2020,160,120159.RajeevKumarSingh:conceptualization,methodology,inves-(6)Aziz,S.D.;Chandra,S.Impact,RecoilandSplashingofMoltentigation,dataextraction,analysis,writingtheoriginaldraft,andMetalDroplets.Int.J.HeatMassTransfer2000,43,2841−2857.writingreviewandediting.SubratDas:projectadministration,(7)Ye,Q.;Domnick,J.AnalysisofDropletImpingementofDifferentresources,conceptualization,methodology,formalanalysis,AtomizersUsedinSprayCoatingProcesses.J.Coat.Technol.Res.2017,writingreviewandediting,andsupervision.NiladriSen:14,467−476.3047https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

10Langmuirpubs.acs.org/LangmuirArticle(8)Moreira,A.L.N.;Moita,A.S.;Panao,M.R.Advancesand̃(32)Wildeman,S.;Visser,C.W.;Sun,C.;Lohse,D.OntheSpreadingChallengesinExplainingFuelSprayImpingement:HowMuchofofImpactingDrops.J.FluidMech.2016,805,636−655.SingleDropletImpactResearchIsUseful?Prog.EnergyCombust.Sci.(33)Fedorchenko,A.I.;Wang,A.-B.;Wang,Y.-H.EffectofCapillary2010,36,554−580.andViscousForcesonSpreadingofaLiquidDropImpingingonaSolid(9)Asai,A.;Shioya,M.;Hirasawa,S.;Okazaki,T.ImpactofanInkSurface.Phys.Fluids2005,17,093104.DroponPaper.J.ImagingSci.Technol.1993,37,205−207.(34)Clanet,C.;Béguin,C.;Richard,D.;Quéré,D.Maximal(10)Stringer,J.;Derby,B.LimitstoFeatureSizeandResolutioninDeformationofanImpactingDrop.J.FluidMech.2004,517,199−208.InkJetPrinting.J.Eur.Ceram.Soc.2009,29,913−918.(35)Roisman,I.V.;Berberovic,E.;Tropea,C.InertiaDominated́(11)Tran,T.S.;Dutta,N.K.;Choudhury,N.R.GrapheneInksforDropCollisions.I.OntheUniversalFlowintheLamella.Phys.FluidsPrintedFlexibleElectronics:GrapheneDispersions,InkFormulations,2009,21,052103.PrintingTechniquesandApplications.Adv.ColloidInterfaceSci.2018,(36)Eggers,J.;Fontelos,M.A.;Josserand,C.;Zaleski,S.Drop261,41−61.DynamicsafterImpactonaSolidWall:TheoryandSimulations.Phys.(12)Derby,B.AdditiveManufactureofCeramicsComponentsbyFluids2010,22,062101.InkjetPrinting.Engineering2015,1,113−123.(37)Scheller,B.L.;Bousfield,D.W.NewtonianDropImpactwitha(13)Caulfield,R.;Fang,F.;Tiwari,M.K.Drops,JetsandHigh-SolidSurface.AIChEJ.1995,41,1357−1367.(38)Bayer,I.S.;Megaridis,C.M.ContactAngleDynamicsinResolution3DPrinting:FundamentalsandApplications.InApplica-DropletsImpactingonFlatSurfaceswithDifferentWettingCharacter-tionsParadigmsofDropletandSprayTransport:Paradigmsandistics.J.FluidMech.2006,558,415.Applications;Basu,S.,Agarwal,A.K.,Mukhopadhyay,A.,Patel,C.,(39)Seo,J.;Lee,J.S.;Kim,H.Y.;Yoon,S.S.EmpiricalModelfortheEds.;Energy,Environment,andSustainability;SpringerSingapore:MaximumSpreadingDiameterofLow-ViscosityDropletsonaDrySingapore,2018;pp123−162.Wall.Exp.Therm.FluidSci.2015,61,121−129.(14)Lee,J.B.;Laan,N.;deBruin,K.G.;Skantzaris,G.;Shahidzadeh,(40)Tang,C.;Qin,M.;Weng,X.;Zhang,X.;Zhang,P.;Li,J.;Huang,N.;Derome,D.;Carmeliet,J.;Bonn,D.UniversalRescalingofDropZ.DynamicsofDropletImpactonSolidSurfacewithDifferentImpactonSmoothandRoughSurfaces.J.FluidMech.2016,786,R4.Roughness.Int.J.MultiphaseFlow2017,96,56−69.(15)Liang,G.;Chen,Y.;Chen,L.;Shen,S.MaximumSpreadingfor(41)Laan,N.;deBruin,K.G.;Bartolo,D.;Josserand,C.;Bonn,D.LiquidDropImpactingonSolidSurface.Ind.Eng.Chem.Res.2019,58,MaximumDiameterofImpactingLiquidDroplets.Phys.Rev.Appl.10053−10063.2014,2,044018.(16)Rein,M.PhenomenaofLiquidDropImpactonSolidandLiquid(42)Vaikuntanathan,V.;Sivakumar,D.MaximumSpreadingofSurfaces.FluidDyn.Res.1993,12,61−93.LiquidDropsImpactingonGroove-TexturedSurfaces:Effectof(17)Qin,M.;Tang,C.;Tong,S.;Zhang,P.;Huang,Z.OntheRoleofSurfaceTexture.Langmuir2016,32,2399−2409.LiquidViscosityinAffectingDropletSpreadingonaSmoothSolid(43)SurfaceRoughnessMeasurementParameters|Olympus.Surface.Int.J.MultiphaseFlow2019,117,53−63.https://www.olympus-ims.com/en/metrology/surface-roughness-(18)Drop-SurfaceInteractions;Rein,M.,Velarde,M.G.,Sayir,M.,measurement-portal(accessedOct4,2020).Schneider,W.,Schrefler,B.,Bianchi,G.,Tasso,C.,Eds.;CISM(44)Yuan,Y.;Lee,T.R.ContactAngleandWettingProperties.InInternationalCentreforMechanicalSciences;SpringerVienna:SurfaceScienceTechniques;Bracco,G.,Holst,B.,Eds.;SpringerSeriesinVienna,2002;Vol.456.SurfaceSciences;SpringerBerlinHeidelberg:Berlin,Heidelberg,2013;(19)Yarin,A.L.;Roisman,I.V.;Tropea,C.CollisionPhenomenainVol.51,pp3−34.LiquidsandSolids;CambridgeUniversityPress:Cambridge,2017.(45)Fiji(ImageJ2).https://imagej.net/Fiji.(20)Yarin,A.L.DropImpactDynamics:Splashing,Spreading,(46)Bertola,V.;Wang,M.DynamicContactAngleofDilutePolymerReceding,Bouncing...Annu.Rev.Fluid.Mech.2006,38,159−192.SolutionDropsImpactingonaHydrophobicSurface.ColloidsSurf.,A(21)Josserand,C.;Thoroddsen,S.T.DropImpactonaSolidSurface.2015,481,600−608.Annu.Rev.Fluid.Mech.2016,48,365−391.(47)Rioboo,R.;Marengo,M.;Tropea,C.TimeEvolutionofLiquid(22)Jones,H.Cooling,FreezingandSubstrateImpactofDropletsDropImpactontoSolid,DrySurfaces.Exp.Fluids2002,33,112−124.FormedbyRotaryAtomization.J.Phys.D:Appl.Phys.1971,4,1657−(48)Range,K.;Feuillebois,F.InfluenceofSurfaceRoughnesson1660.LiquidDropImpact.J.ColloidInterfaceSci.1998,203,16−30.(23)Madejski,J.SolidificationofDropletsonaColdSurface.Int.J.(49)Sage,D.;Stalder,A.DropSnake.http://bigwww.epfl.ch/demo/HeatMassTransfer1976,19,1009−1013.dropanalysis/.(24)Collings,E.W.;Markworth,A.J.;McCoy,J.K.;Saunders,J.H.(50)Stalder,A.F.;Kulik,G.;Sage,D.;Barbieri,L.;Hoffmann,P.ASplat-QuenchSolidificationofFreelyFallingLiquid-MetalDropsbySnake-BasedApproachtoAccurateDeterminationofBothContactImpactonaPlanarSubstrate.J.Mater.Sci.1990,25,3677−3682.PointsandContactAngles.ColloidsSurf.,A2006,286,92−103.(25)Chandra,S.;Avedisian,C.T.OntheCollisionofaDropletwitha(51)Schiaffino,S.;Sonin,A.A.MoltenDropletDepositionandSolidSurface.Proc.R.Soc.London,Ser.A1991,432,13−41.SolidificationatLowWeberNumbers.Phys.Fluids1997,9,3172−(26)Bennett,T.;Poulikakos,D.Splat-QuenchSolidification:3187.EstimatingtheMaximumSpreadingofaDropletImpactingaSolid(52)Das,S.;Mohammed,M.I.;Gibson,I.;Weerasiri,L.;McDonnell,Surface.J.Mater.Sci.1993,28,963−970.A.;Xiang,J.;Yeo,L.OscillationCharacteristicsofLowWeberNumber(27)Mao,T.;Kuhn,D.C.S.;Tran,H.SpreadandReboundofLiquidImpingingMicro-Droplets.Theor.Comput.FluidDyn.2019,33,197−DropletsuponImpactonFlatSurfaces.AIChEJ.1997,43,2169−2179.213.(28)Healy,W.M.;Hartley,J.G.;Abdel-Khalik,S.I.SurfaceWetting(53)Singh,R.K.;Das,S.;Hodgson,P.;Sen,N.DropletOscillationMechanismandItsFreeSurfaceBehavioronImpactingaHeatedEffectsontheSpreadingofLiquidDropletsImpactingaSolidSurfaceatHydrophobicSurfaceatLowWeberNumbers.Numer.HeatTransfer,LowWeberNumbers.Int.J.HeatMassTransfer2001,44,235−240.PartA2020,77,13−32.(29)Pasandideh-Fard,M.;Qiao,Y.M.;Chandra,S.;Mostaghimi,J.(54)Cassie,A.B.D.;Baxter,S.WettabilityofPorousSurfaces.Trans.CapillaryEffectsduringDropletImpactonaSolidSurface.Phys.FluidsFaradaySoc.1944,40,546.1996,8,650−659.(55)Wenzel,R.N.ResistanceofSolidSurfacestoWettingbyWater.(30)Ukiwe,C.;Kwok,D.Y.OntheMaximumSpreadingDiameterofInd.Eng.Chem.1936,28,988−994.ImpactingDropletsonWell-PreparedSolidSurfaces.Langmuir2005,21,666−673.(31)Vadillo,D.C.;Soucemarianadin,A.;Delattre,C.;Roux,D.C.D.DynamicContactAngleEffectsontotheMaximumDropImpactSpreadingonSolidSurfaces.Phys.Fluids2009,21,122002.3048https://dx.doi.org/10.1021/acs.langmuir.0c03193Langmuir2021,37,3038−3048

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭