A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown

A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown

ID:81823216

大小:3.25 MB

页数:7页

时间:2023-07-20

上传者:U-14522
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第1页
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第2页
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第3页
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第4页
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第5页
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第6页
A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown_第7页
资源描述:

《A Steep-Slope MoS 2 Graphene Dirac-Source Field-E ff ect Transistor with a Large Drive Current - Tang et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/NanoLettLetterASteep-SlopeMoS2/GrapheneDirac-SourceField-EffectTransistorwithaLargeDriveCurrent§,§ZhaowuTang,ChunsenLiu,*XiaoheHuang,SenfengZeng,LiweiLiu,JiayiLi,Yu-GangJiang,DavidWeiZhang,andPengZhou*CiteThis:NanoLett.2021,21,1758−1764ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Inthecontinuoustransistorfeaturesizescalingdown,thescalingofthesupplyvoltageisstagnantbecauseofthesubthresholdswing(SS)limit.AtransistorwithanewmechanismisneededtobreakthroughthethermioniclimitofSSandholdthelargedrivecurrentatthesametime.Here,byadoptingtherecentlyproposedDirac-sourcefield-effecttransistor(DSFET)technology,weexperimentallydemonstrateaMoS2/graphene(1.8nm/0.3nm)DSFETforthefirsttime,andasteepSSof37.9mV/decatroomtemperaturewithnearlyfreehysteresisisobserved.Besides,bybringinginthestructureofgate-all-around(GAA),theMoS2/grapheneDSFETexhibitsasteeperSSof33.5mV/decanda40%increasednormalizeddrivecurrentupto52.7μA·μm/μm(V=1V)withacurrenton/offratioof108,whichshowspotentialforlow-powerandhigh-performanceelectronicsDSapplications.KEYWORDS:MoS2,graphene,Dirac-source,gate-all-around,steep-slope,largedrivecurrentDownloadedviaUNIVOFCAPETOWNonMay14,2021at09:59:44(UTC).Thescalingdownofsilicon-basedmetal-oxide-semi-Recently,Dirac-sourceFET(DSFET)hasbeenproposedtoconductorfield-effecttransistor(MOSFET)willnotablyachieveSSbelow60mV/decatroomtemperaturewithoutincreasethedeviceperformanceandcutdowntheirpowercompromisingotheraspectsoftransistorperformanceandthus11−14Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.consumption.However,thesubthresholdswing(SS)ofhasattractedextensiveattention.WhenusingtheDiracMOSFETislimitedtomorethan60mV/decatroommaterialthathasalinearlydecreaseddensityofstates(DOS)temperature,whichwillnotsupportthefurtherscalingofthewithenergyasthesourcematerialofn-typeFET,asteeperSSsupplyvoltage.ToimprovetheelectricalperformanceandcomparedtotheconventionalFETcanbeachieved.Moreover,powerconsumption,lowerSSisneeded.SomenewFETsincetheelectronsinDirac-sourcearestillinjectedintothetechnologieswithemergingprinciplessuchastunnelingFETchannelbythermalemission,DSFETcanstillmaintainthe(TFET)1−5andnegativecapacitanceFET(NCFET)6−10havelargedrivecurrentasthesameastheconventionalMOSFETbeenproposedandwidelystudied.Theyutilizetheband-to-withoutanydegradation.Two-dimensional(2D)materialbandtunnelingeffectofelectronsandthevoltageamplificationMoS2,whichexhibitlargebandgapandexcellentgateeffectofnegativecapacitiveferroelectricstoachievesteeperSS.electrostaticsbecauseofitsatomicallythinthickness,isHowever,bothofthesetwotechnologieshavesomedrawbackslimitingtheirpracticalapplication.Forexample,carriersareReceived:November25,2020injectedintothechannelthroughband-to-bandtunnelinginRevised:February6,2021TFET,thusgreatlysuppressingthedrivecurrentofthedevice.Published:February10,2021ForNCFET,theferroelectricsarepronetopolarizationintheelectricfield,whichmakestheworkingstateofthedeviceunstableandmayhavehysteresisintheirI−Vcurves.©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.nanolett.0c046571758NanoLett.2021,21,1758−1764

1NanoLetterspubs.acs.org/NanoLettLetterFigure1.Schematicdiagramofthesteep-slopeMoS2/GrDSFET.(a)ThecontinuousconstantdensityofstatesDOS(E),Boltzmanndistributedelectrondensityn(E),andelectroninjectioninthenormalmetallicsourceofconventionalMOSFET.(b)ThelinearlyvarieddensityofstatesDOS(E),superexponentiallydecreasedelectrondensityn(E)withdecreasingenergy,andelectroninjectioninDirac-sourceofDSFET.Thepurpledashedlineinn(E)representstheBoltzmanndistribution.(c)SchematicdiagramofperformancecomparisonbetweenconventionalMOSFETandDSFET.DSFETexhibitsasteeperSSwhilemaintainingthesamelevelofdrivecurrentasconventionalMOSFET.(d)StructurediagramoftheMoS2/GrDSFET.(e)BanddiagramoftheMoS2/GrDSFETinoff-state,wherethebulkbarrierheightϕBishigherthantheenergyofthehigh-energyelectronsinGrsource.Figure2.StructuralcharacterizationandelectricalperformanceoftheMoS2/GrDSFET.(a)Top-viewopticalmicroscopeimageoftheMoS2/GrDSFETfabricatedontheAl2O3/Sisubstrate.Thelength(L)andwidth(W)ofthechannelare7μm.(b)RamanspectraofmonolayerGrandtrilayerMoS2measuredbyusingasolid-statelaserwith532nmwavelength.(c)Cross-sectionalhigh-resolutionTEMimageandthecorrespondingEDSmapofthesourceregionofthedevice.ThetopandbottomhBNhaveasimilarthicknessof∼5nm,andMoS2andGraretrilayerandmonolayer,respectively.(d)OutputcharacteristiccurvesofthedeviceunderdifferentVG(varyingfrom−2to2V),demonstratingagoodOhmiccontact.(e)ForwardandreversetransfercharacteristiccurvesofthedeviceunderVDS=0.5V.TheinsetisthetransfercharacteristiccurvesofIDSfrom10−12to10−11A,showingthatthedeviceexhibitsanearlyfreehysteresisof3mV.(f)SSversusIextractedfromthetransfercharacteristicDScurvesin(e)withaminimumSSof37.9mV/decThedashedlinerepresentsthethermallimitofSSatroomtemperature(60mV/dec).TheinsetisthetransfercharacteristiccurveandtheaverageSSofthedeviceinacurrentrangearoundthepointwhichexhibitsthesmallestSSvalueof37.9mV/dec.AnaverageSSof38.3mV/decisobtained,indicatingthatthedevicedoeshaveastableSSperformanceofabout38mV/decinthislowcurrentrange.1759https://dx.doi.org/10.1021/acs.nanolett.0c04657NanoLett.2021,21,1758−1764

2NanoLetterspubs.acs.org/NanoLettLetternaturallydeterminedtoobtainmuchlowerpowercon-constructedbythedrytransfermethod.Moreover,almostallsumptionintheMOSFETstructureandthusisapromisingoftheareasofGrandMoS2arecoveredbyhBN,whichwell15−23candidateforlow-powerelectronics.Mostimportantly,shieldstheinfluenceoftheexternalenvironmentonthedevice.MoS2caneasilyintegratewithDiracmaterialgraphene(Gr)ThedetaileddevicefabricationprocessisshowninMethodsbyvanderWaalsstackingandbringinthegate-all-aroundandthecorrespondingopticalmicroscopeimageduringthe(GAA)structureintotheDSFET.Inthatcase,thisnewfabricationisshowninFigureS3.Figure2bdisplaystheDSFETwithGAAstructurewouldshowadvantagesinbothRamanspectraofGrandMoS2.TheGrexhibitstheGpeakatsmallSSandlargedrivecurrent.∼1582.7cm−1and2Dpeakat∼2673.5cm−1.Meanwhile,theInthiswork,weexperimentallydemonstrateasteep-slopeintensityratioof2DtoGpeakis∼2.46andthe2DbandMoS2/GrDSFETforthefirsttime.UtilizingtheDiracpointofshowsasingleLorentziancurvewithafullwidthathalf-Gr,asteepSSof37.9mV/decatroomtemperatureismaximumof∼28.27cm−1,whichindicatesthatitisa27,281achieved.ThegoodinterfaceofthisvanderWaals’monolayerGr.TheMoS2exhibitstheE2gpeakat∼383.1heterostructureguaranteesahysteresis-freeI−Vcurve.Addi-cm−1andApeakat∼407.1cm−1.Thefrequencydifference1gtionally,byintegratingGAAstructureintothisDSFETthebetweenthetwomodesis∼24cm−1,indicatingthatitisa29,30MoS2/GrDSFETexhibitsasteeperSSof33.5mV/decandatrilayerMoS2.Figure2cistheTEMimageandthedetailed40%increasednormalizeddrivecurrentupto52.7μA·μm/μmEDSelementalmapofthesourceregionofthedevicewhere(VDS=1V).Theseresultsaddressthekeychallengesforlow-GrislocatedabovetheMoS2channel,andtheGr/MoS2powerandhigh-performancetransistorapplications.heterostructureissandwichedbetweenthetophBNInconventionalMoS2MOSFET,thenormalmetallicsourceencapsulatinglayerandthebottomhBNgatedielectric.AssuchasAuhasacontinuousconstantDOSaroundtheFermishownintheTEMimage,thetopandbottomhBNhavea24levelEF.BecausetheelectronfollowstheFermi−Diracsimilarthicknessofaround5nm,andMoS2andGraretrilayerdistributionfunctionf(E),thesourceelectrondensityn(E)andmonolayer,respectively.Additionally,theinterfaceexhibitsapproximateBoltzmanndistribution(DOS(E)∼betweenlayersiscleanandfreeofcontaminationthankstoexp[(EF−E)/kT])withalongthermaltailaboveEF,asthenonresiduedrytransfermethodthathasbeenused.seeninFigure1a.Asaresult,thetransistorsuffersfromaSSFurthermore,theEDSmapofMo,N,andCelementshas2thermioniclimitof60mV/decatroomtemperature,confirmedthecompositionofthematerialsandtheirrestrictingitsfurtherscalingofthesupplyvoltage.Whentherespectivelocationsintheverticaldirection.DiracmaterialthathasalinearlydecreasedDOSwithenergyThefundamentalelectricalperformancesofthedeviceare(DOS(E)∼EDirac−E)isusedasthesourcematerialofMoS2presentedinFigure2d−f.Figure2dshowstheoutputMOSFET,theelectrondensityn(E)aboveEFwillsuper-characteristicofthedeviceunderthegatevoltageVGvaryingexponentiallydecreasewithincreasingenergy(n(E)∼(EDiracfrom−2to2V.DraincurrentIDSshowsagoodlinear−E)exp[(EF−E)/kT]),asshowninFigure1b.ThisDirac-relationshipwithdrainvoltageVDS,whichdemonstratesthesourcegreatlycutsdownthelongthermaltailandcontributesgoodOhmiccontactbetweenMoS2channelanddrain/sourcetoasteeperSScomparedtotheconventionalMOSFETelectrodes.Figure2edisplaystheforwardandreversetransfer(Figure1c).Also,thisnewmechanismwillnotattenuatethecharacteristiccurvesofthedeviceunderadrainbiasof0.5VdrivecurrentofDSFET,becausetheelectronsinthesource(thecorrespondinggateleakagecurrentIGisshowninFigurearestillinjectedintothechannelbythermalemission.S4).AccordingtotheoutputcharacteristiccurvesundertheFigure1disthestructurediagramofourMoS2/GrDSFET.VDSsweeprangeof±0.5VasshowninFigureS5,theIDSisFew-layern-typeMoS2isusedasthechannelmaterialwhilebasicallylinearwiththeVDS,confirmingthatthetransfercurvesmonolayerp-typeGr(thetransfercharacteristiccurvesofGrundertheVDSof0.5Vweremeasuredinthelinearregion.areshowninFigureS1)isusedasthesourcematerial,whichThankstotheperfectdangling-bond-freeandcontamination-11−14satisfiesthedesignrequirementsofDSFET.Also,hBNisfreeinterfacebetweentheMoS2channelandhBN,theforwardselectedasthegatedielectricduetoitsperfectinterfacewithandreversetransfercharacteristiccurvesarealmostidenticaltheMoS2channel.Moreover,toreducetheimpactofthewithaverysmalldifferenceofonly3mV.Onthebasisofthe25,26externalenvironmentondeviceperformance,anencapsu-transfercharacteristiccurves,thecorrespondingSSislatinghBNlayerisaddedonthedevicesurface.AsshownincalculatedbytheformulaSS=dVG/dlog(IDS)andisFigure1e,thereisabulkbarrier(ϕB)betweentheGrsourcepresentedinFigure2f.Fromthecalculationresults,wecanandMoS2channel,whichcanbemodulatedbythegateseethatthethermioniclimitofSS(60mV/decatroomvoltage(VG).WhenVGisproperlynegativebiasedtomakethetemperature)isbrokensuccessfullyintheMoS2/GrDSFETbarrierheighthigherthanthehigh-energyelectronsoftheandaminimumSS(SSmin)of37.9mV/decisachieved.source,themajorityofelectronscannotbeinjectedfromtheBesides,theMoS2/GrDSFETwithsub-60mV/decatroomsourceintothechannelandthedeviceisinoff-state(Figuretemperaturehasbeenrepeatedlydemonstratedinother1e).Duringtheswitching-onprocesswithincreasingVG,thedevices,andtheircorrespondingstructureandelectricalbarrierheightgraduallydecreasesandtheDOSofGrsourceatperformancearepresentedinFigureS6.thetopofthebarrierincreaseslinearly,resultinginaGAAisreferringtothetransistorstructureinwhichthegatesuperexponentiallyincreasedelectrondensityoverthebarrierfullysurroundsthechanneltoachieveexcellentgateandthuscontributingtoasteepSS(seeFigureS2).controllabilityandincreasetheeffectivechannelwidth.InThestructureofMoS2/GrDSFETwascharacterizedbytherecentyears,theadvancedGAAtechnologyhasattractedopticalmicroscope,Ramanspectroscopy,transmissionelectronextensiveattentionfromacademiaandindustryandismicroscope(TEM),andenergydispersivespectroscopyconsideredasagoodcandidateinthetechnologynode31(EDS).Figure2ashowstheopticalmicroscopeimageofthebelow5nm.Uptonow,manyGAAtransistorsbasedon31−34MoS2/GrDSFETontheAl2O3/Sisubstrate.ThehBN,MoS2,siliconnanosheetsandnanowireshavebeenreported,Grwerepreparedbyexfoliationandtheheterostructureswerewhichhavedemonstratedbetterelectricalperformancethan1760https://dx.doi.org/10.1021/acs.nanolett.0c04657NanoLett.2021,21,1758−1764

3NanoLetterspubs.acs.org/NanoLettLetterFigure3.StructurediagramandelectricalperformanceoftheMoS2/GrDSFETwithGAAstructure.(a)SchematicdiagramoftheMoS2/GrDSFETwithGAA.ThegatedielectricishBN.(b)Cross-sectionalstructurediagramofthedeviceinthesidedirection.(c)Schematicdiagramofthedistributionofchargegeneratedinthechannelwhenapositivegatevoltageisapplied.(d)Transfercharacteristiccurves(underVDS=0.5VandVDS=1V)andoutputcharacteristiccurves(inset,underVG=1.5VandVG=2V)ofplanarMoS2/GrDSFETandGAAMoS2/GrDSFETinlinearscale.ThedrivecurrentofGAAFETis140%ofthatofnormalplanarFET.(e)SSversusIDSofplanarMoS2/GrDSFETandGAAMoS2/GrDSFETinthelargescaleandthesmallscale(inset)underVDS=0.5V.TheSSofGAAFETissteeperthanthatofnormalplanarFETandhasaminimumSSof33.5mV/dec(f)ComparisonofminimumSSandnormalizeddrivecurrentIon/(W/L)(onlyref10wasmeasuredatVDS=0.9V,othersweremeasuredatVDS=1V)betweenourMoS2/GrDSFETwithGAAandthepreviouslyreportedMoS2FETs(includingconventionalMOSFET,TFET,andNCFETbasedonMoS2).Theredellipsearearepresentshigh-performanceFETswithlargedrivecurrentwhiletheblueellipsearearepresentslow-powerFETswithsteepSS,andtheMoS2/GrDSFETwithGAAstructureinthisworkislocatedinthepreferredcornerwithbothlowpowerandhighperformance.Figure4.EffectsofGrthicknessandtemperatureonSSofDSFET.(a)BanddiagramofthemonolayerGrandmultilayerGr.(b)SSversusIDSofMoS2FETswithdifferentthicknessesofGrasthesourceunderVDS=0.5V.1L,2L,3Linthefigurerepresentthenumberofgraphenelayersas1,2and3,respectively.(c)SSversusthenumberoflayersofGrextractedfromthecurvesin(b).ThepentagraminthefigurereferstoSSaveandthecirclereferstoSSmin.SSminrepresentstheminimumSSwhileSSaverepresentstheaverageSSintwoordersmagnitudeofIDS.(d)Schematicdiagramoftheeffectoftemperatureontheelectrondensityn(E)oftheGrDirac-source.(e)TransfercharacteristiccurvesoftheMoS2/GrDSFETatdifferenttemperatures(varyingfrom50to300K)underVDS=0.5V.(f)AverageSS(intwoordersmagnitudeofIDS)versustemperatureextractedfromthetransfercharacteristiccurvesin(e).1761https://dx.doi.org/10.1021/acs.nanolett.0c04657NanoLett.2021,21,1758−1764

4NanoLetterspubs.acs.org/NanoLettLettertheplanartransistor,includingtheimprovedSSanddrivecarriersinthesourceareinjectedintothechannelthroughcurrent.Thegoodelectricalperformanceof2Dmaterialsthermalemission,theSSwillvarylinearlywithtemperature.underultrathinthicknessandatomiclevelflatinterfaceinvanWhenthecarriersareinjectedintothechannelthroughband-derWaalsheterostructuresmakethemappropriatefortheto-bandtunneling,theSSwillbealmostindependentwith2,36GAAstructure.temperature.IntheMoS2/GrDSFET,sincetheelectronsInthiswork,tofurtherimprovetheperformanceoftheinthesourcearestillinjectedintothechannelbythermalMoS2/GrDSFETweoptimizedthedevicebyintroducingtheemissionandthesourceelectrondensityn(E)isproportionalstructureofGAA.ThedetailedfabricationprocessoftheGAAtoexp[(EF−E)/kT]likeothernormalMOSFETs(asshowndeviceisshowninMethodsandFigureS7.TheoptimizedinFigure4d),itsSSshouldalsobelinearwithtemperature.IndevicestructurediagramisshowninFigure3a,b,wherethethetemperaturechangemeasurement,thecharacteristiccurvesMoS2channelissurroundedbyhBNdielectricandthehBNisofatypicalMoS2/GrDSFETweremeasuredatdifferentsurroundedbythegateelectrode.Itisworthnotingthat,temperaturesvaryingfrom50to300K(asshowninFigurecomparedwiththeplane-gatestructure,theGAAstructure4e),andtheextractedSSisshowninFigure4f,whichshowsenablesthegatetocontrolthechannelnotonlyfromonesideanexpectedlineardependenceontemperature.Inaddition,butfromallsides,sothatthecarrierscanbegeneratedinallofaccordingtotherelationshipbetweenIDSandTasshowninthesidesofthechannelunderthepositivegatevoltage(asFigure4e,wecanplotthecorrespondingArrheniuscurvesshowninFigure3c).Asaresult,itcanbeseenfromtheunderdifferentVGandthenobtaintheeffectiveSchottkytransfercharacteristiccurvesandoutputcharacteristiccurvesbarrierheightϕBasafunctionofVGbycalculatingtheslopeofshowninFigure3dthatthedrivecurrentofGAADSFETistheselines(asshowninFigureS9).TheaccurateϕBofour26,37increasedby40%comparedwithnormalplanarDSFET.devicecanbeextractedattheflatbandcondition,whichisMoreover,becausethegatecontrollabilityisalsoimprovedinfoundtobeassmallas65.5meV.theGAAdevice,asteeperSSisobtainedintheMoS2/GrInsummary,basedonthemethodofsourceDOSDSFETwithGAAcomparedtotheplanarMoS2/GrDSFET,engineering,theMoS2/GrDSFETwithp-typeGrastheasshowninFigure3e.Also,theminimumSSisfurtherDirac-sourceisproposedandprepared.Thedevicedemon-reducedto33.5mV/dec.stratesasteepSSof37.9mV/decatroomtemperatureandaInFigure3f,wehavereviewedpreviouslyreportedhigh-nearlyfreehysteresisof3mV.ThedeviceisfurtheroptimizedperformanceMoS2FETs,includingconventionalMOS-byintroducingtheGAAstructureandfinallyasteeperSSofFET,16−23TFET,3−5andNCFET9,10basedonMoSand33.5mV/decanda40%increasednormalizeddrivecurrentup2havecomparedtheirperformanceonSSanddrivecurrentwithto52.7μA·μm/μm(VDS=1V)areachieved.ThisMoS2/GrourMoS2/GrGAADSFET(thedetailedstructureandDSFETwithsteepSSandlargedrivecurrentispromisingforperformanceinformationontheseworksarepresentedinfutureelectronicapplicationsandthestrategyofcombiningTableS1).BecausethecurrentofthetransistorisproportionalDirac-sourceandGAAstructureprovidesanewideaforthetothewidth-to-lengthratio(W/L)ofthechannelanddifferentdevelopmentoflow-powerandhigh-performanceelectronicworkshavevariousW/L,forobjectiveevaluationofthesedevices.workswehavenormalizedthedrivecurrent(Ion/(W/L))involvedinthecomparison.Fromtheresultsofthe■METHODScomparison,theMoS2/GrGAADSFEThasamorebalancedDeviceFabrication.TheTi/Aufilms(5nm/10nm)wereperformanceinSSanddrivecurrentandthusshowspromisingfirstpatternedanddepositedontheAl2O3/Sisubstrate(50nmpotentialforlow-powerandhigh-performanceelectronicAl2O3grownonp-dopedSisubstratesbyatomiclayerapplications.deposition)asthebottomgateelectrodebyusingelectron-WhenGrisusedasthesourcematerialoftheMoS2FET,beamlithographyandphysicalvapordeposition.Afterthat,thetheDOSofGrshouldchangelinearlywiththeenergyE,whichmultilayerhBN,MoS2,andmonolayerGrweremechanicallymeansthatwemustchoosethemonolayerGrwhichhasaexfoliatedfrombulkcrystalstoPDMSandthenwerelinearbanddispersion(asshowninFigure4a)asthesourcetransferredinturnfromthePDMSonthebottomgatematerial.FormultilayerGr,sinceitsenergybandnolongerhaselectrodetoformthehBN/MoS2/Gr/hBNheterostructures.thelineardispersionandthereevenmaybeasmalloverlapFinally,thesourceanddrainelectrodeswerepatternedand35betweenitsvalencebandandconductionband(asshownindepositedontheGrandMoS2film,respectively,byusingFigure4a),itselectrondensityn(E)aroundtheFermilevelEFelectron-beamlithographyandelectron-beamevaporationofisnotconcentratedinanarrowrangeandthereforeitisnotCr/Aufilms(5nm/30nm).FortheGAAdevice,theprevioussuitableastheDirac-source.Here,tofurtherverifythestepsarethesameasabove,butanadditionalstepofmetalmechanism,wehavepreparedseveralbatchesofMoS2FETsgateelectrodedeposition(Cr/Au,5nm/30nm)abovethewithGrofdifferentthicknessesasthesourcematerial,andthechannelisrequiredtoformafullenclosureofthegatetotheopticalmicroscopeimagesofthedevicesandtheRamanchannelbyusingelectron-beamlithographyandelectron-beamspectrumofthecorrespondingGrarepresentedinFigureS8.evaporation.Afterfabrication,thedeviceswereannealedat250Figure4b,cshowstheresultsofelectricalmeasurement,and°Cinnitrogenatmospherefor2htoensuregoodcontactwecanseethattheMoS2FETwithmultilayerGrasthesourcebetweenflakesandbetweenthemetalelectrodeandshowsamuchhigherSSthanthatoftheMoS2/GrDSFETsemiconductor.withmonolayerGrDirac-sourceandisfailingtobreaktheSSCharacterizations.Ramanspectroscopywasmeasuredinthermallimitof60mV/decatroomtemperature,whichisveryaSOLInstrumentbyusingasolid-statelaserwith532nmconsistentwiththetheory.wavelength.TheelectricalperformanceofthedeviceatroomTheeffectoftemperatureonSSofMoS2/GrDSFEThastemperaturewasmeasuredinaprobestation(Cascadealsobeeninvestigated.TherelationshipbetweenSSandSummit11000type)byusingtheAgilentB1500Asemi-temperaturedependsonthecarrierinjectionways.Whentheconductordeviceparameteranalyzer.Thetemperaturechange1762https://dx.doi.org/10.1021/acs.nanolett.0c04657NanoLett.2021,21,1758−1764

5NanoLetterspubs.acs.org/NanoLettLettermeasurementofthedevicewastakenonaLakeShoreprobeconditions.Z.T.,C.L.,andP.Z.wrotethepaperwithhelpfromstation.allauthors.■NotesASSOCIATEDCONTENTTheauthorsdeclarenocompetingfinancialinterest.*sıSupportingInformation.TheSupportingInformationisavailablefreeofchargeat■https://pubs.acs.org/doi/10.1021/acs.nanolett.0c04657.ACKNOWLEDGMENTSThisworkwassupportedbytheNationalNaturalScienceDopingtypeofGr;banddiagramoftheMoS2/GrFoundationofChina(61925402,61851402,and61734003),DSFETduringtheswitching-onprocesswithincreasingScienceandTechnologyCommissionofShanghaiMunicipal-gatevoltageVG;opticalmicroscopeimagesduringtheity(19JC1416600),NationalKeyResearchandDevelopmentfabricationprocessoftheMoS2/GrDSFET;gateProgram(2017YFB0405600),ShanghaiEducationDevelop-leakagemeasurementoftheMoS2/GrDSFET;mentFoundationandShanghaiMunicipalEducationCom-reproducibilityoftheMoS2/GrDSFET;schematicmissionShuguangProgram(18SG01),andChinaPostdoctoraldiagramofthefabricationoftheGAAdevice;structuralScienceFoundation(2019M661358,2019TQ0065).characterizationofMoS2FETswithGrofdifferentthicknessesasthesource;structureandperformancesummaryofreportedhigh-performanceMoS2FETs■REFERENCES(PDF)(1)Seabaugh,A.C.;Zhang,Q.Low-VoltageTunnelTransistorsforBeyondCMOSLogic.Proc.IEEE2010,98,2095−2110.■(2)Ionescu,A.M.;Riel,H.TunnelField-EffectTransistorsasAUTHORINFORMATIONEnergy-EfficientElectronicSwitches.Nature2011,479,329−337.CorrespondingAuthors(3)Shin,G.H.;Koo,B.;Park,H.;Woo,Y.;Lee,J.E.;Choi,S.Y.PengZhou−StateKeyLaboratoryofASICandSystem,Vertical-TunnelField-EffectTransistorBasedonaSilicon-MoS2SchoolofMicroelectronics,FudanUniversity,ShanghaiThree-Dimensional-Two-DimensionalHeterostructure.ACSAppl.200433,China;orcid.org/0000-0002-7301-1013;Mater.Interfaces2018,10,40212−40218.Email:pengzhou@fudan.edu.cn(4)Sarkar,D.;Xie,X.;Liu,W.;Cao,W.;Kang,J.;Gong,Y.;ChunsenLiu−StateKeyLaboratoryofASICandSystem,Kraemer,S.;Ajayan,P.M.;Banerjee,K.ASubthermionicTunnelSchoolofMicroelectronicsandSchoolofComputerScience,Field-EffectTransistorwithanAtomicallyThinChannel.NatureFudanUniversity,Shanghai200433,China;2015,526,91−95.Email:chunsen_liu@fudan.edu.cn(5)Koo,B.;Shin,G.H.;Park,H.;Kim,H.;Choi,S.Y.Vertical-TunnelingField-EffectTransistorBasedonMoTe2/MoS22D−2DAuthorsHeterojunction.J.Phys.D:Appl.Phys.2018,51,475101.ZhaowuTang−StateKeyLaboratoryofASICandSystem,(6)Salahuddin,S.;Datta,S.UseofNegativeCapacitancetoProvideVoltageAmplificationforLowPowerNanoscaleDevices.NanoLett.SchoolofMicroelectronics,FudanUniversity,Shanghai2008,8,405−410.200433,China(7)Yu,Z.;Wang,H.;Li,W.;Xu,S.;Song,X.;Wang,S.;Wang,P.;XiaoheHuang−StateKeyLaboratoryofASICandSystem,Zhou,P.;Shi,Y.;Chai,Y.;Wang,X.NegativeCapacitance2DMoS2SchoolofMicroelectronics,FudanUniversity,ShanghaiTransistorswithSub-60mV/decSubthresholdSwingover6Orders,200433,China250μA/μmcurrentdensity,andnearly-hysteresis-free.Proc.IEEEInt.SenfengZeng−StateKeyLaboratoryofASICandSystem,Electron.Dev.Meet.2017,577−580.SchoolofMicroelectronics,FudanUniversity,Shanghai(8)Si,M.;Jiang,C.;Su,C.J.;Tang,Y.T.;Yang,L.;Chung,W.;200433,ChinaAlam,M.A.;Ye,P.D.Sub-60mV/decFerroelectricHZOMoS2LiweiLiu−StateKeyLaboratoryofASICandSystem,SchoolNegativeCapacitanceField-EffectTransistorwithInternalMetalofMicroelectronics,FudanUniversity,Shanghai200433,Gate:TheRoleofParasiticCapacitance.Proc.IEEEInt.Electron.Dev.Meet.2017,573−576.China(9)McGuire,F.A.;Lin,Y.C.;Price,K.;Rayner,G.B.;Khandelwal,JiayiLi−StateKeyLaboratoryofASICandSystem,SchoolofS.;Salahuddin,S.;Franklin,A.D.SustainedSub-60mV/decadeMicroelectronics,FudanUniversity,Shanghai200433,ChinaSwitchingviatheNegativeCapacitanceEffectinMoS2Transistors.Yu-GangJiang−SchoolofComputerScience,FudanNanoLett.2017,17,4801−4806.University,Shanghai200433,China(10)Si,M.;Su,C.J.;Jiang,C.;Conrad,N.J.;Zhou,H.;Maize,K.DavidWeiZhang−StateKeyLaboratoryofASICandD.;Qiu,G.;Wu,C.T.;Shakouri,A.;Alam,M.A.;Ye,P.D.Steep-System,SchoolofMicroelectronics,FudanUniversity,SlopeHysteresis-FreeNegativeCapacitanceMoS2Transistors.Nat.Shanghai200433,ChinaNanotechnol.2018,13,24−28.(11)Qiu,C.;Liu,F.;Xu,L.;Deng,B.;Xiao,M.;Si,J.;Lin,L.;Completecontactinformationisavailableat:Zhang,Z.;Wang,J.;Guo,H.;Peng,H.;Peng,L.M.Dirac-Sourcehttps://pubs.acs.org/10.1021/acs.nanolett.0c04657Field-EffectTransistorsasEnergy-Efficient,High-PerformanceElectronicSwitches.Science2018,361,387−392.AuthorContributions(12)Liu,F.;Qiu,C.;Zhang,Z.;Peng,L.M.;Wang,J.;Guo,H.§Z.T.andC.L.contributedequallytothiswork.DiracElectronsattheSource:Breakingthe60-mV/DecadeSwitchingLimit.IEEETrans.ElectronDevices2018,65,2736−2743.AuthorContributions(13)Liu,F.;Qiu,C.;Zhang,Z.;Peng,L.M.;Wang,J.;Wu,Z.;Guo,P.Z.andC.L.conceivedtheideaandsupervisedtheH.FirstPrinciplesSimulationofEnergyefficientSwitchingbySourceexperiments.Z.T.andC.L.performeddevicefabricationandDensityofStatesEngineering.Proc.IEEEInt.Electron.Dev.Meet.carriedoutthemeasurementsoftheelectricalcharacteristics.2018,763−766.X.H.,S.Z.,L.L.,andJ.L.providedvaluableinputtothedevice(14)Lyu,J.;Pei,J.;Guo,Y.;Gong,J.;Li,H.ANewOpportunityforfabrication.Y.J.providedvaluableinputtotheoverall2DvanderWaalsHeterostructures:MakingSteep-SlopeTransistors.experiments.D.W.Z.providedinputontheexperimentalAdv.Mater.2020,32,1906000.1763https://dx.doi.org/10.1021/acs.nanolett.0c04657NanoLett.2021,21,1758−1764

6NanoLetterspubs.acs.org/NanoLettLetter(15)Radisavljevic,B.;Radenovic,A.;Brivio,J.;Giacometti,V.;Kis,S.;Chun,K.Y.;Park,S.H.;Shin,H.J.;Kim,J.C.;Bhuwalka,K.K.;A.Single-LayerMoS2Transistors.Nat.Nanotechnol.2011,6,147−Kim,D.H.;Kim,W.J.;Yoo,J.;etal.3nmGAATechnologyfeaturing150.Multi-Bridge-ChannelFETforLowPowerandHighPerformance(16)Lembke,D.;Kis,A.BreakdownofHigh-PerformanceApplications.Proc.IEEEInt.Electron.Dev.Meet.2018,656−659.MonolayerMoS2Transistors.ACSNano2012,6,10070−10075.(33)Barraud,S.;Previtali,B.;Lapras,V.;Vizioz,C.;Hartmann,J.(17)Zou,X.;Wang,J.;Chiu,C.H.;Wu,Y.;Xiao,X.;Jiang,C.;Wu,M.;Martinie,S.;Lacord,J.;Casse,M.;Dourthe,L.;Loup,V.;W.W.;Mai,L.;Chen,T.;Li,J.;Ho,J.C.;Liao,L.InterfaceRomano,G.;Rambal,N.;Chalupa,Z.;Bernier,N.;Audoit,G.;EngineeringforHigh-PerformanceTop-GatedMoS2Field-EffectJannaud,A.;Delaye,V.;Balan,V.;Rozeau,O.;Ernst,T.;etal.Transistors.Adv.Mater.2014,26,6255−6261.TunabilityofParasiticChannelinGate-All-AroundStackedNano-(18)Wang,H.;Yu,L.;Lee,Y.H.;Shi,Y.;Hsu,A.;Chin,M.L.;Li,sheets.Proc.IEEEInt.Electron.Dev.Meet.2018,500−503.L.J.;Dubey,M.;Kong,J.;Palacios,T.IntegratedCircuitsBasedon(34)Ritzenthaler,R.;Mertens,H.;Pena,V.;Santoro,G.;Chasin,A.;BilayerMoS2Transistors.NanoLett.2012,12,4674−4680.Kenis,K.;Devriendt,K.;Mannaert,G.;Dekkers,H.;Dangol,A.;Lin,(19)Tang,H.;Niu,W.;Liao,F.;Zhang,H.;Xu,H.;Deng,J.;Chen,Y.;Sun,S.;Chen,Z.;Kim,M.;Machillot,J.;Mitard,J.;Yoshida,N.;J.;Qiu,Z.;Wan,J.;Pu,Y.;Bao,W.RealizingWafer-ScaleandLow-Kim,N.;Mocuta,D.;Horiguchi,N.VerticallyStackedGate-All-VoltageOperationMoS2TransistorsviaElectrolyteGating.Adv.Elec.AroundSiNanowireCMOSTransistorswithReducedVerticalMater.2020,6,1900838.NanowiresSeparation,NewWorkFunctionMetalGateSolutions,(20)Pan,Y.;Jia,K.;Huang,K.;Wu,Z.;Bai,G.;Yu,J.;Zhang,Z.;andDC/ACPerformanceOptimization.Proc.IEEEInt.Electron.Dev.Zhang,Q.;Yin,H.Near-IdealSubthresholdSwingMoS2Back-GateMeet.2018,508−511.TransistorswithanOptimizedUltrathinHfO2DielectricLayer.(35)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Nanotechnology2019,30,No.095202.Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Electric(21)Wang,J.;Li,S.;Zou,X.;Ho,J.;Liao,L.;Xiao,X.;Jiang,C.;Hu,FieldEffectinAtomicallyThinCarbonFilms.Science2004,306,W.;Wang,J.;Li,J.IntegrationofHigh-kOxideonMoS2byUsing666−669.OzonePretreatmentforHigh-PerformanceMoS2Top-Gated(36)Kim,S.;Myeong,G.;Shin,W.;Lim,H.;Kim,B.;Jin,T.;TransistorwithThickness-DependentCarrierScatteringInvestiga-Chang,S.;Watanabe,K.;Taniguchi,T.;Cho,S.Thickness-Controlledtion.Small2015,11,5932−5938.BlackPhosphorusTunnelField-EffectTransistorforLow-Power(22)Illarionov,Y.Y.;Banshchikov,A.G.;Polyushkin,D.K.;Switches.Nat.Nanotechnol.2020,15,203−206.Wachter,S.;Knobloch,T.;Thesberg,M.;Mennel,L.;Paur,M.;(37)Lee,S.;Tang,A.;Aloni,S.;Wong,H.S.StatisticalStudyonthePollach,M.S.;Thirsfeld,A.S.;Vexler,M.I.;Waltl,M.;Sokolov,N.SchottkyBarrierReductionofTunnelingContactstoCVDS.;Mueller,T.;Grasser,T.UltrathinCalciumFluorideInsulatorsforSynthesizedMoS2.NanoLett.2016,16,276−281.Two-DimensionalField-EffectTransistors.Nat.Electron.2019,2,230−235.(23)Desai,S.B.;Madhvapathy,S.R.;Sachid,A.B.;Llinas,J.P.;Wang,Q.;Ahn,G.H.;Pitner,G.;Kim,M.J.;Bokor,J.;Hu,C.;Wong,H.S.P.;Javey,A.MoS2Transistorswith1-NanometerGateLengths.Science2016,354,99−102.(24)Liu,F.SwitchingatLessThan60mV/Decadewitha“Cold″MetalastheInjectionSource.Phys.Rev.Appl.2020,13,No.064037.(25)Liu,Y.;Wu,H.;Cheng,H.C.;Yang,S.;Zhu,E.;He,Q.;Ding,M.;Li,D.;Guo,J.;Weiss,N.O.;Huang,Y.;Duan,X.TowardBarrierFreeContacttoMolybdenumDisulfideUsingGrapheneElectrodes.NanoLett.2015,15,3030−3034.(26)Wang,J.;Yao,Q.;Huang,C.W.;Zou,X.;Liao,L.;Chen,S.;Fan,Z.;Zhang,K.;Wu,W.;Xiao,X.;Jiang,C.;Wu,W.W.HighMobilityMoS2TransistorwithLowSchottkyBarrierContactbyUsingAtomicThickh-BNasaTunnelingLayer.Adv.Mater.2016,28,8302−8308.(27)Liu,J.;Huang,Z.;Lai,F.;Lin,L.;Xu,Y.;Zuo,C.;Zhang,W.;Qu,Y.ControllableGrowthoftheGraphenefromMillimeter-SizedMonolayertoMultilayeronCubyChemicalVaporDeposition.NanoscaleRes.Lett.2015,10,455.(28)Dai,G.P.;Wu,M.H.;Taylor,D.K.;Brennaman,M.K.;Vinodgopal,K.Hybrid3DGrapheneandAlignedCarbonNanofiberArrayArchitectures.RSCAdv.2012,2,8965−8968.(29)Cao,Y.;Wang,Z.;Bian,Q.;Cheng,Z.;Shao,Z.;Zhang,Z.;Sun,H.;Zhang,X.;Li,S.;Gedeon,H.;Liu,L.;Wang,X.;Yuan,H.;Pan,M.PhononModesandPhotonicExcitationTransitionsofMoS2InducedbyTop-DepositedGrapheneRevealedbyRamanSpectros-copyandPhotoluminescence.Appl.Phys.Lett.2019,114,133103.(30)Mouri,S.;Miyauchi,Y.;Matsuda,K.TunablePhoto-luminescenceofMonolayerMoS2viaChemicalDoping.NanoLett.2013,13,5944−5948.(31)Loubet,N.;Hook,T.;Montanini,P.;Yeung,C.W.;Kanakasabapathy,S.;Guillom,M.;Yamashita,T.;Zhang,J.;Miao,X.;Wang,J.;Young,A.;Chao,R.;Kang,M.;Liu,Z.;Fan,S.;Hamieh,B.;Sieg,S.;Mignot,Y.;Xu,W.;Seo,S.C.;etal.StackedNanosheetGate-All-AroundTransistortoEnableScalingBeyondFinFET.Proc.IEEESymposiumonVLSITechnol.2017,230−231.(32)Bae,G.;Bae,D.I.;Kang,M.;Hwang,S.M.;Kim,S.S.;Seo,B.;Kwon,T.Y.;Lee,T.J.;Moon,C.;Choi,Y.M.;Oikawa,K.;Masuoka,1764https://dx.doi.org/10.1021/acs.nanolett.0c04657NanoLett.2021,21,1758−1764

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭