《Critical Amphiphilic Concentration E ff ect of the Extent of Amphiphilicity on Marine Fouling-Release Performance - Rahimi et al. - 2021》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/LangmuirArticleCriticalAmphiphilicConcentration:EffectoftheExtentofAmphiphilicityonMarineFouling-ReleasePerformanceAliRezaRahimi,ShaneJ.Stafslien,LyndsiVanderwal,JamesBahr,MaryamSafaripour,JohnA.Finlay,AnthonyS.Clare,andDeanC.Webster*CiteThis:Langmuir2021,37,2728−2739ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Amphiphilicsurfaces,containingbothhydrophilicandhydrophobicdomains,offerdesirableperformanceformanyapplicationssuchasmarinecoatingsoranti-icingpurposes.Thisworkexplorestheeffectoftheconcentrationofamphiphilicmoietiesonconvertingapolyurethane(PU)systemtoacoatinghavingfouling-releaseproperties.AnovelamphiphiliccompoundissynthesizedandaddedatincreasingamountstoaPUsystem,wheretheamountoftheadditiveistheonlyvariableinthestudy.Theadditive-modifiedsurfacesarecharacterizedbyavarietyoftechniquesincludingATR-FTIR,XPS,contactanglemeasure-ments,andAFM.Surfacecharacterizationsindicatethepresenceofamphiphilicdomainsonthesurfaceduetotheintroductionoftheself-stratifyingamphiphilicadditive.Thefouling-releasepropertiesofthesurfacesareassessedwiththreebiologicalassaysusingUlvalinza,Cellulophagalytica,andNaviculaIncertaasthetestorganisms.Achangeinthefouling-releaseperformanceisobservedandplateauedonceacertainamountofamphiphilicityisattainedinthecoatingsystem,whichwecallthecriticalamphiphilicconcentration(CAC).■INTRODUCTIONtoxicitytonontargetmarineorganismsandimpactonaquatic2,6environments.Therefore,thefocusforthedevelopmentofMarinebiofouling,theunwantedsettlementofmarinenewtypesofmarinecoatingshastransitionedtonontoxicorganismsonsubmergedsurfacesinseawater,isacomplex,1antifouling(AF)andfouling-release(FR)coatings.multistage,process.Theprocessisnonlinear,meaningCurrentAFcoatingsystemsutilizeavarietyofbiocidestobiofoulingcanbeinitiatedwitheitherformationofacontendwithbiofoulingsuchasmetaloxides,copperandzincconditioningbacteriafilmorattachmentofmacrofoulants2,3pyrithiones,variousorganicboosterbiocides,andSelektope.DownloadedviaUNIVOFCONNECTICUTonMay16,2021at10:36:20(UTC).likebarnaclesormussels.ThediversityoffoulingorganismsWhilethesesystemsarelesstoxicthantributyltin,theyarestill(morethan4000worldwide,notincludingmicrofoulants),biocidalandthereforehavethepotentialtoadverselyaffectthetheirmodesofadhesion,andsurfaceaffinitiesfurtherSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.complicatesthisproblem.1,2,4Thenegativeimpactsofenvironment.FRsystemsareanotherapproach,knowntobenontoxicandmoreenvironmentallyfriendly.WhileAFbiofoulingaremany,including,butnotlimitedto,heightenedcoatingsfunctionbyleachingbiocidestodetersettlementoreconomiccosts,increaseddrag,increasedfuelconsumption,3,5killmarineorganisms,FRcoatingsperformbyweakeningtheandintroductionofinvasivespeciestonewhabitats.Foradhesionofbiofoulantsonasurfacethatfacilitatestheirexample,theUSNavyspends$1billionperyeartomaintain1,23release.itsshipsoperationalduetobiofouling.ThetraditionalFRsystemsarecomposedoflow-surfaceThecomplexandambiguousnatureofthebiofoulingenergyelastomericmaterialssuchaspolydimethylsiloxaneproblemhasrequiredthedevelopmentofprotectivesystems2,7(PDMS)elastomers.Nevertheless,thesiliconeelastomerthroughouthistory.Thetraditionalapproacheswerelargelysystemssufferfrompoormechanicalpropertiesandweakbasedoncopperalloysandleadsheaths,butthesesystemswereeventuallypassedoverduetothelimitedmineralresourcesandcorrosionpotentialassteelshiphullswereReceived:December1,2020introduced.Inthe1900s,coatingsystemscontainingvariousRevised:February5,2021biocidesinaresinbinderorpolymermatrixwereintroduced.Published:February15,2021Thetributyltin(TBT)-containingself-polishingcoatingsystemswerehighlyeffective;however,theuseofTBT-basedpaintswasbannedin2008globallybecauseoftheir©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c034462728Langmuir2021,37,2728−2739
1Langmuirpubs.acs.org/LangmuirArticleadhesion,resultingintheneedforatie-coattoimprove■EXPERIMENTALSECTION2,4adhesion.Self-stratifyingsiloxane−polyurethane(SiPU)FRMaterials.Isophoronediisocyanate(IPDI)polyisocyanateDes-coatingshavebeenexploredtoaddressthelimitationsofthemodurZ4470BAwasprovidedbyCovestroLLC.Monocarbinol-8,9traditionalFRsystems.SiPUandsimilarhydrophobicterminatedpolydimethylsiloxane(PDMS)ofmolecularweightsystemspossessthedesiredfouling-releaseperformanceagainst10000M̅n(MCR-C22)waspurchasedfromGelest,Inc.Poly(ethylenemanyorganisms,buttherearemanyotherbiofoulantsthatglycol)methylether(750M̅n),ethyl-3-ethoxypropionate,methylethylketone(MEK),acetylacetone,methylamylketone(MAK),andpreferahydrophobicsystemforsettlementorbetter4,10dibutyltindiacetate(DBTDAc)werepurchasedfromSigma-Aldrich.adherence.Asaresult,amphiphiliccoatingscomposedofTolueneandisopropanolwerepurchasedfromVWR.Followingabothhydrophilicandhydrophobicsegmentshavebeendetaileddescriptionelsewhere,anacrylicpolyolmadeof80%butylinvestigatedtocontendwiththediversityofbiofoulingacrylateand20%2-hydroxyethylacrylatewaspreparedviaconven-2,11−15tionalfreeradicalpolymerizationanddilutedto50%intoluene.9organisms.OneapproachhasbeentheincorporationofamphiphilicAkzoNobelInternationalPaintprovidedthecommercialFRadditives,ofteninhydrophobicmatrixsystems,toimprovethestandardsIntersleek700(IS700),Intersleek900(IS900),and16Intersleek1100SR(IS1100).Siliconeelastomer,SilasticT2(T2),performanceofFRcoatingsbymodifyingtheirsurface.andcontrolthermoplasticpolystyrene(PS)wereprovidedbyDowReportedsurface-modifyingadditivesincludeamphiphilicCorning.HydrophobicA4−20coating(A4−20),asiloxane−polyur-17−2216,23−26copolymers,zwitterionic-basedpolymers,andethanesystem,waspreparedasaninternalcontrolfollowingthe279hydrogel-likepolymers.Furthermore,siliconeoilshaveproceduresdescribedelsewhere.AmphiphilicT-10coating,internalbeenusedasadditivestotakeadvantageofbothcriticalcoatingcontrol,waspreparedfollowingtheprocedureelsewhereforasurfacetensionandsurfacelubricatingbehavior.28−30Addi-formulationthatcontained10wt%PEG750M̅nandPDMS15tionally,fillerssuchassepiolitenanofibers,modifiedgraphite,10000M̅n.Aluminumpanels(4″×8″in.,0.64mmthick,typeA,alloy3003H14)andsteelpanels(3″×6″in.,0.51mmthick,typeandcarbonnanotubesandpigments,suchasTiO2andZnO,QD)werepurchasedfromQ-labandweresandblastedandprimedhaveshownenhancedFRperformanceandarerecognizedaswithIntergard264(InternationalPaint)usingair-assistedspray10,31−34specialtyadditives.Mostofthesematerialsareapplication.Multiwellmicrotiterplatesweremodifiedusingcircular42incorporatedinthesystemstotunethesurfacetobedisks(1in.diameter)ofprimedaluminum.amphiphilic.DesignofExperiments.AnamphiphilicadditivebasedonWhiletheliteratureindicatesthatamphiphilicitycontributes10000M̅nPDMSand750M̅nPEGpendantchainswassynthesizedandincorporatedinapolyurethanecoatingsystem.ThesemoleculartoimprovedFRperformance,theextentofamphiphilicitythatweightswereselectedbecausetheywerefoundtoofferdesirableFRofferstheneededperformanceisnotclear.Theanswertothisperformanceaccordingtothepreviouspublishedand(un)publishedquestioniscomplexasitdependsonmanyfactorssuchastypeworkinourlab.15,43Thisstudywasdesignedtoevaluateonlyoneofcoatingsystem,targetedaquaticenvironment,andtargetedvariablefactor:theamountoftheamphiphilicadditiveinthePUorganisms,tomentionafew.coatingsystem.Theadditivewasaddedinvaryingamounts,rangingInthiswork,ourgoalwastocarryoutsomepreliminaryfrom10upto40wt%(thehighestamountthatcouldbeaddedbeforethePUfilmlostitsintegrityinresponsetomechanicalcoatingexperimentsinthishithertounexploredareatodetermineiftests).Thus,atotalofsixformulationswerepreparedasoutlinedinthereisanamountofamphiphilicitythatresultsindesirableTable1.ThetableoutlinestheamountofadditiveineachsystemandFRperformance,hereafterreferredtoasthecriticalamphiphilicthecontentofPEGandPDMSinthesolidcontentofthefinalconcentration(CAC).Besides,weenvisioned,ifillustratedtrue,coatingsystem.thisconceptwillbebeneficialtootherfieldsandapplicationswhereamphiphilicityhasbeeninvestigatedasapromisingpathTable1.CoatingCompositions35−3839−41suchasmedicaldevicesoranti-icingsurfaces.formulationadditiveamount(wt%)PDMS(wt%)PEG(wt%)Therefore,toaddressthisamphiphilicityquestionandlimitthenumberofvariablesinthisstudy,wesynthesizedanovelF00(unmodifiedPUsystem)00amphiphilicadditivebasedonPDMSandPEG,andF101044incorporateditinincreasingamountsinaconventionalF202088F25251010polyurethane(PU)coatingsystem,assessingthepointwhereF30301212thePUsystemdemonstratedthebehaviorofaFRPUsystem.F40401717WechoseasimplePUsystemasthematrixratherthanaaF50502121highlyhydrophobicmatrix(e.g.,siliconeelastomer)sothattheaF50wasnotincludedinsurfaceandbiologicalassaycharacter-effectoftheamphiphilicadditivecouldbeunderstoodizationsasitlackedthedesiredmechanicalintegrity.somewhatindependentlyofthematrixpolymer.Inthisstudy,wediscussthreeaspectsoftheinvestigation:(1)ControlandStandardCoatings.Commercialstandardsweresynthesisandcharacterizationoftheamphiphilicadditive(bypreparedfollowingtherespectivemanufacturers’guidelines.InternalFouriertransforminfraredspectroscopy(FTIR)andiso-controlhydrophobicSiPU(A4)waspreparedfollowingthecyanatetitration);(2)surfacecharacterizationofthePUprocedureoutlinedinapreviousstudy.9T-10coating,internalcoatingswithdifferentamountsoftheamphiphilicadditive(byamphiphiliccontrol,containingacovalentlyincorporated10000M̅ncontactanglemeasurements,attenuatedtotalreflectancePDMSand750M̅nPEGprepolymerwasalsopreparedfollowinga15(ATR)-FTIR,X-rayphotoelectronspectroscopy(XPS),andpreviouslyreportedmethod.Similartotheexperimentalcoatings,atomicforcemicroscopy(AFM))andmechanicalevaluationsthecontrolandstandardswerealsopreparedon4″×8″primedaluminumpanelsandmultiwellplates.Table2containsdetailed(bycoating-relatedtests);and(3)correlationoftheFRdescriptionsofthecontrolandstandardcoatingsusedforthisstudy.performanceofthesystemstotheamountoftheintroducedSynthesisofAmphiphilicAdditive.Theamphiphilicadditiveadditiveandacomparisonoftheresultswithinternalcontrolswassynthesizedbyreactingmono-hydroxy-terminatedPEGandandcommercialcoatings.PDMSwiththepolyisocyanateIPDItrimerDesmodurZ44702729https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
2Langmuirpubs.acs.org/LangmuirArticleTable2.ListofControlandStandardReferenceCoatingsaCoatingPreparation.Allcoatingformulationswerepreparedsimilarly,excepttheamountofaddedadditivevaried.TopreparethecontrolunmodifiedpolyurethaneF0formulation,acrylicpolyol(8.00g;50%controlnameIDdescriptionsolid)andacetylacetone(0.62g)(potlifeextender)wereaddedinaSiPUA4−20A4InternalSiPUFRControlvialandstirredunderambientconditionsfor24h.IPDIisocyanateamphiphilicSiPUT-10InternalAmphiphilicSiPUControltrimerDesmodurZ4470BAresin(2.96g)andDBTDAccatalystcommercialpolyurethanePUPurePolyurethaneStandardsolution(0.25g)wereaddedtothevial,andthemixturewasstirredDowT2T2SiliconeElastomerStandardforanotherhourbeforeapplicationtothesubstrate.Intersleek700IS700IntersleekCommercialFRStandardToprepareanadditive-modifiedpolyurethaneformulation,forexampleF25,acrylicpolyol(8.00g;50%solid),acetylacetone(0.62Intersleek900IS900IntersleekCommercialFRStandardg)(potlifeextender),andthe10kPDMS-750PEGadditive(4.18g;Intersleek1100SRIS1100IntersleekCommercialFRStandard60%solid)wereaddedtoavialandstirredunderambientconditionsaCommercialPSwasusedasaninternalstandardtocheckthatU.for24h.IPDIisocyanatetrimerDesmodurZ4470BAresin(2.96g)linzawasbehavingwithinexpectations.andDBTDACcatalystsolution(0.25g)werethenaddedandthemixturewasstirredforanotherhourbeforeapplicationtothesubstrate.Coatingformulationswereappliedonprimed8″×4″aluminum(Scheme1).TheratioofNCOgroupstothecombinedOHgroupsand6″×3″steelpanelsusingawire-rounddrawdownbarwithafilmwas1:1.Isocyanategroupswerefullyconvertedtourethanelinkagesthicknessof80μm.AllcoatingswereallowedtocureunderambientbyattachmentofPEGandPDMSchains.PEGandPDMSwereconditionsfor24h,followedbyovencuringat80°Cfor45min.addedinequalweightratiostomeettherequiredonemolarratio.Coatingswerecutoutincirculardisksandgluedto24-wellplatesforSpecifically,tosynthesizetheamphiphilicadditive(AmpAdd),thebiologicalassays.PEG750M̅n(1.00g)wasmixedwithtoluene(3.00g)ina25mLSurfaceCharacterization.AKrussDSA100(dropshapeflask.PDMS10000M̅n(1.00g)wasaddedtotheflaskandmixedanalyzer)wasutilizedtomeasurethesurfacewettabilityandsurfacerobustlywithvortexfor2min.IPDItrimerresin(0.56g)andenergyofthecoatings.ThreereplicatewateranddiiodomethaneDBTDAccatalystsolution(1%bywtinMAK)(0.128g)werethencontactanglesweremeasuredforeachsample.Foreachreplicate,theaddedtotheflask.Thereactionwasrunat80°Cfor2h.Asanotherstaticcontactanglewasmeasuredover9min.Surfaceenergyforeachmethod,thereactioncouldalsobecompletedatambientconditions44for24h.Arefluxcondenserwasusedwhenheatwasapplied.ThesurfacewascalculatedusingtheOwens−Wendtmethod.Slipflaskwasequippedwithamagneticstirrer,nitrogeninlet,andangles,advancingandrecedingwatercontactanglesforsurface,weretemperaturecontroller.Intheory,thesynthesizedprepolymerevaluatedusingatiltingstagewherea25μLwaterdropletwasviewedcontained41.37wt%PEGand41.37wt%PDMS.onacoatingsurface(tiltedat10°/min)andvalueswererecordedatIsocyanateTitrations.Isocyanatetitrationwasusedtomonitorthedegreethatthedropletstartedtorolloff;threereplicateswerethereactionprogressandconfirmthecompleteconversionoftherecordedandpresenteddatarepresentmeanvalueswitherrorbars.isocyanategroupsafterthesynthesisoftheadditive.AnadditiveThemeasuredanglesandsurfaceenergieswerecalculatedusingKrusssample(0.3−0.5g)wasweighedinanErlenmeyerflaskanddilutedAdvancesoftware.withisopropanol.Then,25mLof0.1NdibutylaminesolutionandAttenuatedtotalreflectance-Fouriertransforminfraredspectrosco-anadditional25mLofisopropanolwereaddedtotheflaskandthepy(ATR-FTIR)wasusedtocharacterizethesurfacesofthecoatings.mixturewasstirredfor15min.Severaldrops(3−5drops)ofABrukerVertex70withHarrick’sATRaccessoryusingabromophenolblueindicatorwereaddedtotheflask.ThecontentofhemisphericalGecrystalwasutilizedtocollectATR-FTIRspectratheflaskwastitratedusingastandardized0.1Nhydrochloricacidforacoating.untiltheendpointbluetoyellowwasobserved.AblankpreparedwithX-rayphotoelectronspectroscopy(XPS)wascarriedoutusingaonly25mLofdibutylaminesolutionwasalsotitratedfollowingtheThermoScientificK-Alphasystemtodeterminetheelementalsameprocedure.Therecordedamountofhydrochloricacidforbothcompositionofthecoatings.TheinstrumentisequippedwithamonochromaticAlKα(1486.68eV)X-raysourceandAr+ionsourcetitrationswasusedtocalculatetheamountofisocyanateremaining.PercentSolidDetermination.Thenonvolatilecontentofthe(upto4000eV).DepthprofilingofacoatingwasevaluatedusingadditivewasdeterminedfollowingASTMD2369.Briefly,aweighedargonionwith30etchcycles.Foreachetchcycle,theionbeamwasemptyaluminumpanwasfilledwithanadditivesample(1−2g).setto1000eVmonatomicmodewithlowcurrentand30setchtime.Isopropylalcoholwasusedtocoverthesample.ThepanwasplacedAftereachetchingcycle,fivereplicatesurveyspectrawerecollected,atinanovenat120°Cfor1h.Afterremovalfromtheoven,thepanlowresolution,withaconstantanalyzerpassenergyof200eV,forawasweighedagaintodeterminethemeanpercentsolidsfromthreetotalof20ms.Foreachrun,photoemissionlinesforC1s,N1s,O1s,replicaterecordings.andSi2pwereobserved.SpectrawerecollectedatananglenormaltoFourierTransformInfraredSpectroscopy.Fouriertransformthesurface(90°)ofa400μmarea.Thechamberpressurewasmaintainedbelow1.5×10−7Torr,andsampleswereanalyzedatinfrared(FTIR)spectroscopywasusedtocharacterizetheadditive,usingaThermoScientificNicolet8700FTIR.Theadditivewasambienttemperature.Atomicconcentrationswerequantifiedbytheappliedasathinlayeronapotassiumbromide(KBr)platetocollectinstrument’ssoftwareasarepresentationoftheatomicintensitiesasathespectrum.percentageofthetotalintensityofallelements.Scheme1.SynthesisofAmphiphilicAdditiveBasedonIPDITrimerContainingPDMS10000M̅nandPEG750M̅n2730https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
3Langmuirpubs.acs.org/LangmuirArticleAtomicforcemicroscopy(AFM)wasutilizedtostudythesurfacepreviously.1,45,49Briefly,asuspensionwith4×105cells/mLofN.topographyofthecoatings.ADimension3100microscopewithaincerta(adjustedto0.03ODatabsorbance660nm)inGuillard’sF/2nanoscopecontrollerscannedthesurfaceofexperimentalcoatings,mediumwasdepositedintoeachwell(1mLperwell)andcellcollectingimagesonasampleareaof100μm×100μmintheattachmentwasstimulatedbystaticincubationfor2hunderambienttappingmode.Theexperimentwasruninair,underambientconditionsinthedark.Coatingsurfaceswerethensubjectedto48conditions,usingasiliconprobewithaspringconstantof0.1−0.6N/waterjettreatments.Thefirstcolumnofwellswasnotwater-jettedmandaresonantfrequencyof15−39kHz.Foreachsurface,threesothatinitialcellattachmentcouldbedeterminedandthenexttworeplicatesatvaryingspotswerecollectedtoensuretheconsistencycolumnsofwellswerewater-jettedat10and20psi,respectively,forandaccuracyofthedata.10s.MicroalgaebiomasswasquantifiedbyextractingchlorophyllWaterAging.Allofthepreparedcoatingswerepreleachedfor28using0.5mLofDMSOandmeasuringfluorescenceofthetransferreddaysinrunningtapwater.Thewatertankswereequippedtoextractsatanexcitationwavelengthof360nmandemissionautomaticallyfillandemptyevery4h.Wateragingofthecoatingsiswavelengthat670nm.Therelativefluorescence(RFU)measuredcarriedouttomeettwoobjectives:(1)toleachoutanyimpuritiesfromtheextractswasconsideredtobedirectlyproportionaltothethatmayinterferewithFRassessments;and(2)todetermineiftherebiomassremainingonthecoatingsurfacesafterwaterjetting.Theareanysurfacerearrangementsofthecoatingsandwhetherthepercentremovalofattachedmicroalgaewasdeterminedusingtheadditivesleachouttoasignificantdegree.Allbiologicallaboratoryrelativefluorescenceofnonjettedandwater-jettedwells.assayswerecarriedoutafterthepreleachingwateragingprocesswasCoatingPropertyEvaluation.Stability,adhesion,strength,andcompleted.flexibilityaredesirablepropertiesfororganiccoatings.Adouble-rubBiologicalLaboratoryAssays.GrowthandReleaseoftest,accordingtoASTMD5402,evaluatedtheresistanceofcoatingsMacroalgae(Ulvalinza).Asetofmultiwellplateswassenttoagainstsolvents.Ahammer(0.75kg)with3-foldcheeseclothNewcastleUniversity,followingwaterimmersionfor28days,towrappedarounditsheadwassoakedinMEKor3.5wt%NaClevaluatefouling-releaseperformanceofcoatingsagainstU.linza.Thewatersolutionandrubbedagainstthecoating.Theheadofthe45detaileddescriptionabouttheassessmentcanbefoundelsewhere.hammerwasrewetaftereach25doublerubs.ThenumberofdoubleBriefly,afterleachatecollection,allmultiwellplateswereequilibratedrubswasnotedwhenmarkswereobservedonthesurfaceofcoatings.in0.22μmfilteredartificialseawater(TropicMarin)for2h.ToeachImpacttest,accordingtoASTMD2794,wasusedtoassessthewell,a1mLsuspensionofU.linzasporeswasadded,adjustedto3.3strengthofcoatingsusingaGardnerimpacttester.Themaximum×105spores/mL(0.05ODatabsorbance660nm)inenricheddropheightwas43in.withaweightof4pounds.Coatedsteelpanels46wereplacedinthetestinglocation,andtheloadatvaryingheightswasseawatermedium.Sporesthatsettledonthedisksweregrownfor7daysinsideanilluminatedincubator,at18°C,witha16:8light/darkdroppedonthecoating.Theresultswererecordedininch-poundscycle(photonfluxdensity45μmol·m−2·s−1).Therewasnowashing(in-lb).Crazingand/orlossofadhesionfromthesubstrateweretoremoveunsettledsporesaftersettlement.After7days,themeanobservedasafailurepoint.Coatingsthatdidnotfailwerereportedasbiomassgeneratedpriortowaterjettingwasassessedfromasinglehavinganimpactstrengthof>172in-lb.Thetestwasruninbothrowofwells(6)fromeachplate.Twootherrowsofwellswereforward(front)andreversemodes.Theweightwasdroppedontopexposedtowaterjetpressuresof9.7psi(67kPa)and16psi(110kPa)ofthecoatingfilminforwardimpactmode,whiletheweightwasfor10sperwell.U.linzabiofilmbiomasswasdeterminedbeforeanddroppedonthebackofthecoatedsubstrateinthereversemode.afterwaterjettingbyextractingchlorophyllwith1mLofDMSOtoAcrosshatchadhesiontest,accordingtoASTMD3359,assessedeachwater-pressuredwellfollowedbymeasuringthefluorescenceattheadhesionofthecoatingstothesubstratebyapplyingand360nmexcitationand670nmemission.Fluorescencefromtheremovingapressure-sensitivetapeovercutsmadeinthefilm.Theextractedchlorophyllisdirectlyproportionaltothebiomasspresentresultswerereportedonascaleof0−5B,where0Bindicatesoneachcoatingsurface.47TheremovalofU.linzaateachpressurecompleteremovalofthecoatingand5Bindicatesnoremovalofthewascomparedwiththeunsprayedwellsthatwereusedtodeterminecoatingsfromthesubstrateasaresultofthistest.initialbiomass.Theconicalmandreltest,accordingtoASTMD522,wasusedtoBacterial(Cellulophagalytica)BiofilmAdhesion.Fouling-releasedeterminetheflexibilityofthecoatingsonthesubstrate.Inprinciple,propertiestowardbacteriawereevaluatedusingretentionandidealflexiblecoatingsshouldnothaveanycrackswhenundergoingadhesionassaysdescribedpreviously.42,48Briefly,asolutionofthethebendingtest.TheresultsofflexibilitywerereportedasthelengthmarinebacteriumC.lyticaat107cells/mLconcentrationinartificialofaformedcrackincmonthecoatingafterthebendingtest.seawater(ASW)containing0.5g/Lpeptoneand0.1g/LyeastextractStatisticalAnalysis.Statisticalanalyseswereperformedusingwasdepositedinto24-wellplates(1mL/well).TheplateswerethenSASsoftware,version9.4.TheGLMprocedurewithTukey’smethodincubatedstaticallyat28°Cfor24h.TheASWgrowthmediumwaswasutilizedtodeterminethedifferencemeanforeachtreatmentthenremovedandthecoatingsweresubjectedtowaterjettreatments.groupunderacompletelyrandomizedexperimentaldesign.TheOneachplate,thefirstcolumnofcoatingswasnottreatedandassessedresponseforthisanalysiswasthebiomassremainingofshowedtheinitialamountofbacterialbiofilmgrowth.Thesecondandmarineorganismsofinterest.thirdcolumnsweresubjectedtowaterjettingat10and20psi,respectively,for5s.Followingwaterjettreatments,thecoating■RESULTSANDDISCUSSIONsurfaceswerestainedwith0.5mLofacrystalvioletsolution(0.3wt%Inthisstudy,anamphiphilicadditive(AmpAdd)basedonindeionizedwater)for15minandthenrinsedthreetimeswithdeionizedwater.After1hofdryingatambientlaboratoryconditions,10000M̅nPDMSand750M̅nwassynthesizedandaddedatthecrystalvioletdyewasextractedfromthecoatingsurfacesbyincreasingamountstoapolyurethanecoatingsystemadding0.5mLof33%aceticacidsolutionfor15min.Theresulting(developedinternallywithIPDIisocyanatetrimerandacryliceluatesweretransferredtoa96-wellplate(0.15mL/coatingreplicate)polyol),andtherelationshipbetweentheconcentrationoftheandsubjectedtoabsorbancemeasurementsat600nmwavelengthAmpAddandFRperformancewasestablishedaccordingly.usingamultiwellplatespectrophotometer.TheabsorbancevaluesAdditiveCompoundSynthesis.Theamphiphilicweredirectlyproportionaltotheamountofthebacterialbiofilmadditive,AmpAdd,waspreparedbyreactingmono-hydroxyl-presentoncoatingsurfacesbeforeandafterwaterjettingtreatments.terminatedPEG(750M̅n)andPDMS(10000M̅n)withanThepercentremovalofthebacterialbiofilmwasquantifiedbyIPDIisocyanatetrimerresin.Thecompleteconversionofthecomparingthemeanabsorbancevaluesofthenonjettedandwaterjettedcoatingsurfaces.33isocyanategroupstourethanelinkagewasconfirmedwithGrowthandReleaseofMicroalgae(Naviculaincerta).TheFTIRandisocyanatetitrations.AnFTIRspectrumofthelaboratorybiologicalassaywiththediatom(N.incerta)wasconductedAmpAdd(FigureS1)showstheabsenceoftheisocyanatepeakatNDSUfollowingasimilarproceduretothatdescribedat2250cm−1andstretchingforsecondaryamineoftheformed2731https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
4Langmuirpubs.acs.org/LangmuirArticleurethanelinkageat3350cm−1.Additionally,theappearanceoflackofhydrophilicdomains).ThechangeinvalueswasmoreoverlappingpeaksforPDMS(Si−O−Si)at1030cm−1andprominentforwatercontactangles(WCA)thandiiodo-PEG(C−O−C)at1105cm−1confirmedtheattachmentofmethanecontactangles(MICA).However,theextentofamphiphilicchainsontheadditive.Furthermore,isocyanatechangesincontactanglevalueswassimilarregardlessofthetitrationsvalidatedthecompleteconversionoftheisocyanateamountofadditive.Additionally,astheamountofthegroupssincethetitrationsindicatedtheabsenceofisocyanate.AmpAddwasincreasedforthemodifiedPUcoatings,theSurfaceCharacterizationofCoatings.AseriesofinitialwatercontactangledecreaseduntilaplateauwascoatingswasthenmadewheretheAmpAddwasincorporatedobservedforcoatingswith25wt%orahigheramountoftheintoapolyurethanecoatingatarangeofconcentrations,asadditive(formulationsF25,F30,F40).ThistrendisattributedindicatedinTable1.SurfacecharacterizationofthecoatingstotheincreasingamountofhydrophilicmoietiesonthesurfacewascompletedwithATR-FTIR,contactanglemeasurements,duetoAmpAdd.WhentheconcentrationofthesemoietiesonXPS,andAFM.ATR-FTIRwasusedtoassessthepresenceofthesurfacebecamesaturated,additionalamountsofthethechemicalmoietiesonthesurfacesofthecoatings.TheAmpAdddidnotfurtherimpactthesurface,displayingaspectraforallofthemodifiedPUcoatingsweregenerallylevelingtrend.Also,thecontactanglesofmodifiedPUcoatingssimilar.Theonlydifferencesobservedwerechangestotheweregenerallylowerthanthatofthecontrolcoatings,whichintensitiesofpeaksassociatedwithPEGat1030cm−1andcanberelatedtotheadditionofAmpAdd.PDMSat1105cm−1(Figure1redandgreen,respectively)SurfaceenergyfortheexperimentalandcontrolcoatingswascalculatedusingWCAandMICAvalues(Figure2B).ThesurfaceenergyvaluesformodifiedPUcoatingswerebetween40and45mN/minitiallyandincreasedasafunctionoftime,showingadynamicnaturesimilartocontactanglevalues.Mostly,thegreatestchangewasobservedforcoatingswithhigheramountsoftheAmpAdd(coatingsF25andF40).Thesurfaceenergyvaluesforthemodifiedcoatingsweredifferentfromthecontrolcoatingsat25−30mN/m.Theslipangle(waterdropletroll-offangle)forthestudiedcoatingsshowedadecliningtrendastheamountoftheAmpAddincreasedforthesystems(Figure2C).SimilartotheWCAvalues,theslipanglebecomesrelativelyconstantonceitreachesa25wt%concentrationofAmpAdd.Incomparison,thehydrophobicA4showedaconsiderablyhigherslipanglewhiletheamphiphilicT-10displayedavaluewithintherangeoftheassessedcoatings.Furthermore,thetiltingexperimentprovidedadvancingcontactangle(AdvCA)andrecedingcontactangle(RecCA)values,andatrendsimilartoslipanglewasFigure1.ATR-FTIRspectraofthesurfaceofunmodifiedandobserved(Figure2D).Thehysteresis(differencebetweenAdvmodifiedpolyurethanecoatings.ThespectrumofeachcoatingisCAandRecCA)washigherforcoatingsF10andF20thanlabeledtoreflectitsIDnumberandamountofaddedAmpAddcoatingswithhigheramountsoftheAmpAddintheiradditive,rangingfrom0to40wt%.composition(coatingsF25,F30,F40).Thelowerthehysteresis,thesmootherasurfaceis,andtypicallythiswithrespecttotheC−O−Cpeakoftheurethanelinkageincreasestheeaseof“rolloff”fromitssurface.Relatingthese(Figure1yellow).Also,anoverlappedbroadstretchingpeakresultstothecontrolcoatings,theA4systemshowedaforhydroxylgroup(duetourethanelinkagefromtheAmpAddhysteresissimilartothesystemswithloweramountsoftheandcrosslinkingreaction)waspresentatca.3350cm−1.TheseAmpAdd(i.e.,F20)andtheT-10showedasimilarvaluetothedataindicatethatbothPDMSandPEGarepresentatthePUhigherAmpAdd-containingsystems(i.e.,F30).ContactanglesurfacescontainingtheAmpAddandarethusamphiphilic,measurementsforthecoatingsafter28daysofwateragingwhiletheunmodifiedPUlacksthisproperty.Overall,asmoreincreased,whichwasrelatabletotheT-10controlsystemamphiphilicadditivewaspresentinasystem,theintensitiesfor(FigureS2).ThischangewasattributedtorearrangementofPEGandPDMSpeaksincreasedaccordingly,signalingadirectthesurfaceashydrophilicandhydrophobicdomainsinteractedcorrelationbetweentheavailabilityofamphiphilicmoietiesonwithwaterandtotheprobabilitythatsomeamountofthethesurfaceswiththeamountofadditive.AmpAddmayhaveleachedout.ContactanglemeasurementswereutilizedasanotherXPSwasutilizedtoquantifytheelementalcompositionsofmethodtocharacterizethesurfaces.Thecontactangledatamaterialsonthesurfaceandasafunctionofdepthofthewerecollectedasstaticmeasurementsovertimeanddynamiccoatings.Asexpected,theresultsshowedthattheAmpAddmeasurementsusingatiltingstage.Theadditivesresultedinaadditiveself-stratifiedontothesurface,sothattherewasadynamicsurface,meaningthatthecontactanglesforbothhigherconcentrationofSithanConthesurface,whilethiswateranddiiodomethanedecreasedasafunctionoftimetrendwasreversedthroughoutthebulkofacoating(Figure3).(Figure2A).ThisdynamicnatureisattributedtotheTheXPSdepthprofilinganalysissuggeststhattheconcen-amphiphilicityofthesurfaceswherethehydrophilicdomainstrationoftheamphiphilicmoietiesonthesurfacewasdirectlycausethewaterdroplettospreadastheyswell.TheobservedrelatedtotheamountofincorporatedAmpAdd.TheinitialSidynamicbehaviorfortheadditivelymodifiedPUcoatingswasconcentrationwashigher(Cconcentrationwaslower)asthesimilartotheT-10amphiphiliccontrolcoating,whiletheamountoftheAmpAddwasincreased(exceptforF10).ThehydrophobicA4systemdidnotpossesssuchafeature(duetodataindicatedthattheconcentrationofSirapidlydeclinedasa2732https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
5Langmuirpubs.acs.org/LangmuirArticleFigure2.Contactangleandsurfaceenergydataforcoatings:(A)Watercontactangles(WCA)andmethyleneiodidecontactangles(MICA)asafunctionoftimeat0min(t0)and9min(t9);(B)surfaceenergy(SE)ofcoatingsat0and9min,calculatedbytheOwens−WendtmethodutilizingtheaverageWCAsandMICAsforeachcoating;(C)slipangleofcoatingswhereawaterdropletstartstorolloff;(D)advancingwatercontactangle(AdvCA)andrecedingwatercontactangle(RecCA)data,measuredbytiltingthecradleat0minandthevalueswererecordedattheslipanglewhenthedropletstartedtorolloff.A4andT-10aretheinternalcoatingsforcomparison.Theplotteddatarepresentmeanvalueswitherrorbars.Figure3.XPSdataforunmodifiedandmodifiedPUcoatings:(A)XPSdepthprofiledataforthecarbonC1satom;(B)XPSdepthprofiledataforthesiliconSi2patom.functionofthicknessfortheF10coatingandplateauedatmaterialslikePEGappeardarker(lowphaseangles).The∼2%.AlessdrasticdecreasingtrendwasalsonoticedforAmpAdd-modifiedPUcoatingsdisplayedheterogeneouscoatingsF20,F25,andF30,andallofthesesystemseventuallysurfacesinbothheightandphaseAFMimagesthatwereleveledataSiconcentrationaround5−6%.However,thecomposedoflightanddarkpatterns,implyingtheformationofdecreasingtrendwasnotobservedforcoatingF40,indicatingacomplexamphiphilicmorphology(Figure4).ThethattheconcentrationofSiatomswasalmostuniformuntiltheunmodifiedPUsystemexhibitedauniformhomogenousassessedthicknessof36nm(Figure3B).TheXPSdataforthesurface(freeofpatterns)thatwasrelativelysimilartotheCatomshowedanincreasingtrendforcoatingsF10,F20,F25,hydrophobicA4system(sinceithassolelyPDMSontheandF30,inaccordwiththedecreasingSiatomtrendforeachsurface)(FigureS3).AstheAmpAddwasincorporatedintosystem.TheincreasingCatomtrendwasnotobservedforthePUsystem,thepresenceofsphericalmicrodomainsonthecoatingF40,whichcorrelatedwiththeunchangingSiatomsurfacewasobserved(Figure4)andthesurfaceroughnessconcentrationofthisformulation.Asexpected,theunmodifiedincreased(TableS1).TheAmpAdd-modifiedcoatingsPUsystemshowedauniformconcentrationoftheCatomdisplayedasurfacethatwasrelatabletothemorphologyofthroughoutthecoatingsincetherewasnoSiinitscontrolT-10amphiphiliccoating(FigureS3)thissystemcomposition.TheXPSdataconfirmsthattheamountoftheusesthesamemolecularweightsofPEG(750M̅n)andPDMSAmpAddhasadirecteffectonthecompositionofthesystem(10000M̅n)thatareusedforthesynthesizedAmpAddadditivebothatthesurfaceandinthebulkofthecoating.inthisstudy,butinsteadthePEGandPDMSchainsareAFMwasemployedtostudythemorphologyofthecovalentlyboundintothecoatingsystem.Theareaofthesedevelopedsurfaces.ThegeneralnotationisthatsoftmaterialssurfacedomainsincreasedastheconcentrationoftheAmpAddlikePDMSappearlighter(highphaseangles)andharderinaformulationincreasedfrom10wt%(F10)to20wt%2733https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
6Langmuirpubs.acs.org/LangmuirArticleFigure4.AFMphaseimages(upperbox)andheightimages(lowerbox)forunmodifiedandmodifiedPUcoatingslabeledaccordingtocoatingnumber.Eachimageisforanareaof100μm×100μm.(F20)and25wt%(F25).TheF30formulation(containing30indicatethattheAmpAddrearrangesonthesurfaceasitisnotwt%AmpAdd)exhibitedaverysimilarmorphologytoF25,crosslinkedintothesystem,andthisobservationcorrespondsbutmanysmallerdomainswereseenamongthemicro-withincreasedwatercontactanglevaluesafterthewaterdomains.CoatingF40showeddomainsthatwerelargerinimmersionperiod.comparisontoF25andF30,whichmaybeduetotheFRPerformanceAssessmentsviaBiologicalLabo-saturatedsurfacebytheAmpAdd(notethatcapturingAFMratoryAssays.BiologicalassayswereconductedtoevaluateimagesfortheF40coatingwasmorechallengingthanothertheFRpropertiesofthestudiedcoatingsusingarangeofsystemsduetoitsincreasedslipperynatureandlimitationsofmarinefoulingorganisms.Alloftheassessmentswerecarriedtheinstrument).TheAFMimagessupporttheevidencefromoutafter28daysofwaterleachingtoensurethattoxicATR-FTIRandXPSthattheAmpAddself-stratifiedtotheimpuritiesdidnotinterferewiththeresults.Thecoatingsweresurface.Furthermore,theincreasingtrendoftheamountoftheevaluatedforleachatetoxicityusingC.lytica,N.incerta,andU.45,50observedheterogeneousdomainsisindirectcorrelationwithlinzaasdescribedelsewherepriortoanyFRexperiments.theincorporatedamountofAmpAdd;thehighertheadditiveAllofthecoatingswerenontoxic(datanotreported;availableamount,thehighertheareacoverageofdomainsontheuponrequest).surface.TheAFMimagesforcoatingsweretakenafterwaterU.linzaisaknownbiofoulingmacroalgaspecies.Thesporesimmersion.Overall,thecoatingsexperiencedaslightdecreaseproducedbyU.linzaexploresurfacesforareasthataremostinthenumberofthedomainsontheirsurface.Thischangeisfavorableforattachment.TheyrespondtoanumberofnoticeableinFigureS4,exhibitingtheAFMimagesforF25physicalfactorsincludingsurfacechemistry,wettability,andcoatingafterandbeforewaterimmersion.TheAFMimagesroughness.Ingeneral,thesporestendtosettleatlower2734https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
7Langmuirpubs.acs.org/LangmuirArticledensitiesonhydrophilicthanonhydrophobicsurfaces,butAmpAdd;however,theadditionoffurtheramountsofthewhenpresentedwithamphiphiliccoatings,theambiguousAmpAdddidnotresultinadditionalremoval(Figure5B)and/natureofthesurfacescandelaysettlementandthereforealsoorlessbiomassremaining(Figure5A).At10psi,thereleasein51−53resultinlowersettlementdensities.SettlementacrosstherelationtotheamountoftheAmpAddfollowedasimilarrangeofadditive-containingcoatingswasbroadlysimilar,trend;however,thecriticalconcentrationoftheAmpAddwhichprobablyreflectsthenarrowrangeofsurfaceenergiesneededtobeat30wt%(12wt%PDMSandPEGeach)toandthefactthatunsettledsporeswerenotremovedfromtheoffertheoptimumperformance.Thesefindingsarecomparablesystem.totheresultsofotherstudieswhereanactivitythresholdwasAftersettlement,thesporesgerminateanddevelopintoalsoidentifiedforFRactivityagainstthesporelingsofU.linzasporelings(youngplants)onthesurfacesofthecoatings.ToincoatingscontainingtheamphiphilicdiblockcopolymersofassessFRpotential,thebiofouledsurfaceswerewater-jettedat20PDMSandPEGylated−fluoroalkylpolystyreneblocks.Thetwopressurelevels,10and16psi,andthebiomassremainingactivitysimilarlyincreasedwiththeweightcontentoftheblockwasdetermined(Figure5Abluebars10psi;greenbars16copolymerandwasrelatedtosurfacesegregation.Fluorine-freeamphiphilicblockcopolymerscontainingPDMSandPEGalsoshowedamarkedthresholdforFRactivityagainstthe54sporelingsofU.linza.ThesecoatingsreconstructedonimmersioninwaterbringingthePEGchainstothesurface,whichcorrelatedwiththeperformanceagainstsporelings.TheAmpAdd-modifiedcoatingsF25,F30,andF40outperformedalloftheinternalcontrolsandcommercialstandards,andthereleasedataforU.linzasuggeststhatacriticalamphiphilicconcentration(CAC)ofapproximately10−12wt%bothPEGandPDMS(25−30wt%AmpAdd)isrequiredtooptimizeperformance(Figure5).C.lyticaisanotherbiofoulingorganismthatisrecognizedforitsaffinitytosettleonavarietyofsurfacesthatrangefrom2hydrophilictohydrophobic.Theextentofbiofoulingamongthestudiedandcontrolsystemsvariedgreatly(Figure6Aredbars).Overall,experimentalcoatingsF0,F30,andF40andcontrolcoatingsA4andT-10showedthelowestC.lyticabiofouling,whilecommercialcontrolssuchasIS700,IS900,andIS1100showedthehighestamountofC.lyticabiofouling.Thefouling-releaseexperimentswerecarriedoutattwopressurelevelsandthebiomassofC.lyticaremainingwasreportedat10psi(Figure6Abluebars)and20psi(Figure6Agreenbars).Generally,thereleaseoftheC.lyticafilmwashigherat20psithan10psiresultinginaloweramountofbiomassremainingonthesurface,butthetrendswerealikebetweenthetwopressurelevels(Figure6A).At20psi,anamountoftheAmpAddbetween10and25wt%resultedinimprovedreleaseofC.lyticaincontrasttotheunmodifiedFigure5.Fouling-releasedataforU.linza:(A)Biofilmgrowth(redsystem(comparisonP-values<0.05,Tukey’smethod,Tablebar)andreleasedatabiofilmremainingafter10psiwaterjet(blueS3),buttheextentofbiomassremainingwasalmostthesamebar)andbiofilmremainingafter16psiwaterjet(greenbar).Thex-regardlessoftheamountofadditivewithinthisrangeaxisislabeledtospecifytheformulationsandoverallcoating(comparisonP-values>0.05,Tukey’smethod,TableS3).categoriesincludingexperimental,internal,andcommercial.TheOncetheamountoftheAmpAddinasystemreached30wt%light-greendottedlineshowsthetrendofbiomassremainingafter16fortheF30coating(12wt%PEGandPDMSeach),thepsiwaterjetting,highlightingtheplateauingFRperformanceafterreleaseofC.lyticasignificantlyimprovedovertheobservedCACisattained.(B)PercentremovaloftheU.linzabiofilmat16psiperformancefortheF10,F20,andF25systems(comparisonfromthesurfaceofadditivelymodifiedexperimentalcoatings.Theplotteddatarepresentmeanvalueswitherrorbars.P-values<0.05,Tukey’smethod,TableS3).However,theadditionofmoreAmpAddintheF40system(40wt%;17wt%PEGandPDMSeach)didnotenhancethereleaseorpsi).AdhesionstrengthwasgenerallystrongeronmoderatelyremovalandshowedasimilarperformancetoF30(Figure6)hydrophilicsurfaces,suchasthepolyurethanestandardcoating(comparisonP-values>0.05,Tukey’smethod,TableS3).At(PU)andthepolyurethanebasecoating(F0),ascanbeseen10psi,theadditionoftheAmpAdddidnotresultinbetterintheresults(Figure5A).Fortheadditive-containingcoatings,fouling-releaseperformanceupto25wt%AmpAdd;thus,thereleasetrendwassimilaratbothwaterpressures.At16psi,coatingsF10,F20,andF25displayedC.lyticareleasethatwastheintroductionof10wt%AmpAdd(4wt%PEGandPDMScomparabletotheunmodifiedF0system.However,oncetheeach)and20wt%AmpAdd(8wt%PDMSandPEGeach)amountoftheAmpAddreached30wt%andhigher,itshowedimprovedthereleaseofU.linzatoalmosttwicethatoftheanimprovedreleasefortheC.lyticafilm.CoatingsF30andunmodifiedPUsystem(F0coating)(comparisonP-values 8Langmuirpubs.acs.org/LangmuirArticleFigure7.Fouling-releasedataforN.incerta:(A)Biofilmgrowth(redFigure6.Fouling-releasedataforC.lytica:(A)Biofilmgrowth(redbar)andreleasedatabiofilmremainingafter10psiwaterjet(bluebar)andreleasedatabiofilmremainingafter10psiwaterjet(bluebar)andbiofilmremainingafter20psiwaterjet(greenbar).Thex-bar)andbiofilmremainingafter20psiwaterjet(greenbar).Thex-axisislabeledtospecifytheformulationsandoverallcoatingaxisislabeledtospecifytheformulationsandoverallcoatingcategoriesincludingexperimental,internal,andcommercial.Thecategoriesincludingexperimental,internal,andcommercial.Thelight-greendottedlineshowsthetrendofbiomassremainingafter16light-greendottedlineshowsthetrendofbiomassremainingafter16psiwaterjetting,highlightingtheplateauingFRperformanceafterpsiwaterjetting,highlightingtheplateauingFRperformanceafterCACisattained.(B)PercentremovaloftheN.incertabiofilmat20CACisattained.(B)PercentremovaloftheC.lyticabiofilmat20psipsifromthesurfaceofadditivelymodifiedexperimentalcoatings.Thefromthesurfaceofadditivelymodifiedexperimentalcoatings.Theplotteddatarepresentmeanvalueswitherrorbars.plotteddatarepresentmeanvalueswitherrorbars.weresimilaramongtheadditivelymodifiedPUcoatings.thatF30andF40coatingsoutperformedboththeinternalandGenerally,theadditionoftheAmpAddimprovedthereleaseofcommercialsystemseithersignificantly(TableS3)ormargin-theN.incertabiofilm(Figure7B).At20psipressurelevel,theally(Figure6A).AsforU.linza,theFRdataofC.lyticaremovalofthefilmimproveduntil25wt%(10wt%PEGandsuggeststhatacriticalamphiphilicconcentration(CAC)wasPDMSeach)AmpAddwasaddedintothesystem,comparingneededtodelivertheminimumbiomassremaining(FigureF25,F20,andF10systemswithunmodifiedF0formulation6A)and/ormaximumrelease/percentremoval(Figure6B)(Figure7A)(comparisonP-values<0.05,Tukey’smethod,untilaplateauedperformancewasobserved.ThisCACforC.TableS4).Moreadditiveafterthispointresultedinaplateaulyticawasat12wt%PEGandPDMSeach(30wt%andnegligiblefurtherimprovementperobservedperformanceAmpAdd),beingintherangeoftheCACforU.linza.ofF30andF40systems,where30and40wt%amphiphilicN.incertaiswellknownasanothermajorbiofoulingadditivewasincorporated,respectively(comparisonP-values>organismthatadheresmorestronglytohydrophobicthan0.05,Tukey’smethod,TableS4).Asimilartrendwasnoticed51,52hydrophilicsurfaces.TheextentofN.incertabiofoulingatthe10psipressurelevel,excepttheplateaupointwasvariedamongthestudiedcoatings,internalcontrols,anddeterminedtobeat30wt%AmpAdd(12wt%PEGandcommercialreferencecoatings(Figure7Aredbars).Overall,PDMSeach).CoatingsystemsF25,F30,andF40thatcoatingsT2,PU,andIS700showedthehighestbiofoulingcontained25wt%ormoreadditivesreleasedtheN.incertalevels;commercialIS900andIS1100SRshowedthelowestfilmsbetterthaninternalcontrols(A4andT-10),indicatingamountofbiofouling;andtheadditivelymodifiedPUcoatingstheeffectofamphiphilicconcentrationatthesurfaceonFRwereintermediate.ThereleaseoftheN.incertabiofilmwasperformance(comparisonP-values<0.05,Tukey’smethod,evaluatedattwopressurelevels,andtheremainingbiofilmofTableS4).TheonlytwocoatingsthatoutperformedtheN.incertawasassessedat10psi(Figure7Abluebars)andAmpAdd-modifiedPUsystemswereIS900andIS1100.The20psi(Figure7Agreenbars).TheremainingbiomassoftheN.incertareleasedatafollowedasimilartrendtothoseN.incertafilmswasnoticeablylowerat20psithan10psi.EvenobtainedforU.linzaandC.lytica,inthatacriticalCACthoughtheextentofrelease/removalwasdifferentduetotheneededtobemetbeforethemaximumFRperformanceandwaterpressurelevelsused,theobservedtrendsatbothlevelsplateauedregionwasattained.ThisCACforN.incertawasat2736https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739 9Langmuirpubs.acs.org/LangmuirArticle10−12wt%PEGandPDMSeach(25−30wt%AmpAdd),higherweremoredynamic,possessedlowerslip-offangles,andonparwiththeCACforU.linzaandC.lyticamarinedisplayedthelowestcontactanglehysteresis(differenceorganisms.betweenadvancingandrecedingcontactangles).XPSshowedCoatingMechanical/StabilityEvaluation.MechanicalthattheAmpAddself-stratifiedontothesurfaces,andthetestswereperformedonthePUcoatingstoassesstheirpresenceoftheamphiphilicmoietiesonthesurfacewasintegrityastheamountoftheAmpAddincreasedinthedirectlycorrelatedwiththeamountoftheAmpAddinasystem.Thepropertiesstartedtodropat50wt%AmpAdd;system.XPSdataindicatedthatforcoatingscontaining25wtthus,40wt%concentrationoftheAmpAddwasmarkedasthe%orhigherAmpAdd,theadditiveswerewelldistributedonhighestlimitbeforepropertiesdeclined(TableS5).CoatingsthesurfaceandextendedtoahigherthicknesswithinthebulkshoweddesirablestabilityagainstMEKandsaltwaterdoubleofthecoating.AFMimagesclearlyshowedheterogeneousrubsuntil40wt%AmpAdd.Additionally,theadditivedidnotmicrosizeddomainsaftertheAmpAddwereintroducedtotheimpacttheperformanceofthecoatinginresponsetotherapidPUsystem,andthesumofdomainsincreasedastheamountofdeformationimpacttest.TheconicalmandrelbendtesttheAmpAddincreasedinaformulation.OnceAmpAddwasshowedthattheadditivedidnotaffecttheflexibilityoftheintroducedat25wt%orhigheramountsinaformulation,thecoatings.AlthoughitwasexpectedthatthelongPEGandsurfacesweresaturatedbythesesphericalmicrodomains.PDMSchainswouldcontributetobetterflexibility,itdidnotMechanicalintegrityofthecoatingswasassessedtoo,anditoccurbecausethesemoietiesweremostlypresentonthewasdeterminedthatthecoatingsmaintainedtheirintegritysurfaceofacoatingratherthanthroughoutthebulkduetountil40wt%AmpAddwasadded.Overall,theFRdataandtheirself-stratification.Theadhesionofthecoatingstothesurfacecharacterizationsgohandinhand.Bothsuggestthatatsubstrateremainedconsistentandunchangeduntil40wt%acriticalamphiphilicconcentrationtherearenoticeableAmpAdd.Generally,theintroductionoftheAmpAddwasnotchangesincontactangles,surfacemorphology,andextentofdetrimentaltothePUsystemuntil40wt%.Thus,coatingsremovalofthebiologicalfilms.Thecriticalamphiphilicwith40wt%orlessoftheAmpAddwereselectedtobeconcentration(CAC)thatresultedinthemaximumFRinvestigatedforthisstudy.performancewasbetween10and12wt%PEGandPDMSeach(25−30wt%AmpAdd).■CONCLUSIONSThepresentedCACconceptinthisstudyexemplifiestheTheresultsshowedthatamphiphilicmoietiesareabletonecessityandimportanceofunderstandingthefundamentalsmigratetothesurfaceofacoatingandmodifyituntilapointofamphiphilicsurfaces.Suchknowledgeenablestheenhancedofsaturation,andthenadditionalsurface-activeagentsdonotdesignofamphiphilicsurfacesthatarebeingutilizedformanychangethesurfaceorimpactthefouling-release(FR)applicationssuchascoatingsforthemarineindustry,medicalperformance.Thispointofsurfacesaturationisthecriticaldevices,andanti-icingsurfaces.Hence,futureeffortswillamphiphilicconcentration(CAC).ThisbehaviorsharesreplicateCACforotherapplicationsaswellasaddresshowsimilaritieswithwhatoccurswhensurfactantsareaddedtoachangingtheratioofhydrophobicandhydrophilicmaterialsorliquidthesurfactantreducesthesurfacetensionuntilthereplacingPEGwithotherhydrophilicmoieties(i.e.,zwitterionsinterfaceissaturatedandthenadditionalsurfactantdoesnotsuchaspoly(sulfobetainemethacrylate))willaffectperform-changethesurfacetensionbutformsmicelles,withtheance.Additionally,therewillbeinvestigationstounderstandconcentrationatwhichthisoccursknownasthecriticalmicelletheextentofadditivemigration/distributioninbulkandconcentration.55,56Thisworkexploredtheeffectofincorporat-surfaceandtheeffectofmolecularstructuresonsize,shape,inganamphiphilicadditiveintoapolyurethanecoatingsystem.andagglomerationofamphiphilicdomains.Theamphiphilicadditivewasmadebyattachinghydroxyl-terminatedPEGandPDMSchainsonapolyisocyanate.■ASSOCIATEDCONTENTAmphiphiliccoatingsystemsarebeingwidelyinvestigatedas*sıSupportingInformationmarinecoatings,buttherecontinuestobealackofknowledgeTheSupportingInformationisavailablefreeofchargeatabouttheserecentlydevelopedsystems.Thus,thisstudywashttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c03446.designedtodetermineatwhatconcentrationofamphiphilicityAFMimagesforbeforeandafterimmersionofasystem;aconventionalPUsystemdevelopsFRproperties.Generally,AFMimagesforthecontrolhydrophobicA4andcontrolastheamountoftheamphiphilicadditiveinthePUcoatingamphiphilicT-10(PDF)increased,thesurfaceofthecoatingsystembecamemoreamphiphilic.TheFRdataofthecoatingsagainstallbiologicalassays(C.lytica,U.linza,andN.incerta)demonstratedthatthe■AUTHORINFORMATIONsystemsperformedbestwhenaspecificamountofCorrespondingAuthoramphiphilicitywaspresentinacomposition(aperformanceDeanC.Webster−DepartmentofCoatingsandPolymericcomparableorbetterthanbothinternalcontrolsandMaterials,NorthDakotaStateUniversity,Fargo,Northcommercialcoatings).TheamountofamphiphilicitythatDakota58108,UnitedStates;orcid.org/0000-0002-resultedinthedesiredperformancetowardallmarine5765-9514;Email:dean.webster@ndsu.eduorganismswasbetween10and12wt%PEGandPDMSeach(25−30wt%AmpAdd),andafurtheramountoftheAuthorsAmpAddabovethisconcentrationdidnotboosttheFRAliRezaRahimi−DepartmentofCoatingsandPolymericperformance.SurfacecharacterizationprovidedfurtherinsightMaterials,NorthDakotaStateUniversity,Fargo,Northintothesesurfacesaswell.ATR-FTIRshowedthepresenceofDakota58108,UnitedStatesanamphiphilicsurface.ContactanglemeasurementsindicatedShaneJ.Stafslien−DepartmentofCoatingsandPolymericthattheamphiphilicconcentrationhadadirectimpactontheMaterials,NorthDakotaStateUniversity,Fargo,Northsurfaceconsideringthatcoatingswith25wt%AmpAddorDakota58108,UnitedStates2737https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739 10Langmuirpubs.acs.org/LangmuirArticleLyndsiVanderwal−DepartmentofCoatingsandPolymericpoly(ethyleneglycol)monoacrylateimmersedinseawater.LangmuirMaterials,NorthDakotaStateUniversity,Fargo,North2008,24,12272−12281.Dakota58108,UnitedStates(12)Rath,S.K.;Chavan,J.G.;Ghorpade,T.K.;Patro,T.U.;Patri,JamesBahr−DepartmentofCoatingsandPolymericM.Structure−propertycorrelationsoffoulreleasecoatingsbasedonlowhardsegmentcontentpoly(dimethylsiloxane−urethane−urea).J.Materials,NorthDakotaStateUniversity,Fargo,NorthCoat.Technol.Res.2018,15,185−198.Dakota58108,UnitedStates(13)Yi,L.;Xu,K.;Xia,G.;Li,J.;Li,W.;Cai,Y.Newprotein-MaryamSafaripour−DepartmentofCoatingsandPolymericresistantsurfacesofamphiphilicgraftcopolymerscontaininghydro-Materials,NorthDakotaStateUniversity,Fargo,Northphilicpoly(ethyleneglycol)andlowsurfaceenergyfluorosiloxaneDakota58108,UnitedStatesside-chains.Appl.Surf.Sci.2019,480,923−933.JohnA.Finlay−SchoolofNaturalandEnvironmental(14)Zhang,Z.-P.;Song,X.-F.;Cui,L.-Y.;Qi,Y.-H.SynthesisofSciences,NewcastleUniversity,NewcastleuponTyneNE1polydimethylsiloxane-modifiedpolyurethaneandthestructureand7RU,U.K.propertiesofitsantifoulingcoatings.Coatings2018,8,157.AnthonyS.Clare−SchoolofNaturalandEnvironmental(15)Galhenage,T.P.;Webster,D.C.;Moreira,A.M.S.;Burgett,R.Sciences,NewcastleUniversity,NewcastleuponTyneNE1J.;Stafslien,S.J.;Vanderwal,L.;Finlay,J.A.;Franco,S.C.;Clare,A.7RU,U.K.S.Poly(ethylene)glycol-modified,amphiphilic,siloxane−polyur-ethanecoatingsandtheirperformanceasfouling-releasesurfaces.J.Completecontactinformationisavailableat:Coat.Technol.Res.2017,14,307−322.https://pubs.acs.org/10.1021/acs.langmuir.0c03446(16)Rahimi,A.;Stafslien,S.J.;Vanderwal,L.;Finlay,J.A.;Clare,A.S.;Webster,D.C.Amphiphiliczwitterionic-PDMS-basedsurface-Notesmodifyingadditivestotunefouling-releaseofsiloxane-polyurethaneTheauthorsdeclarenocompetingfinancialinterest.marinecoatings.Prog.Org.Coat.2020,149,No.105931.(17)Cai,L.;Liu,A.;Yuan,Y.;Dai,L.;Li,Z.Self-assembledperfluoroalkylsilanefilmsonsiliconsubstratesforhydrophobic■ACKNOWLEDGMENTScoatings.Prog.Org.Coat.2017,102,247−258.ThisworkwassupportedbytheUnitedStatesOfficeofNaval(18)Pollack,K.A.;Imbesi,P.M.;Raymond,J.E.;Wooley,K.L.ResearchundergrantnumbersN00014-16-1-3064toD.C.W.;Hyperbranchedfluoropolymer-polydimethylsiloxane-poly(ethyleneglycol)cross-linkedterpolymernetworksdesignedformarineandN00014-16-1-2988andN00014-16-1-3125toA.S.C.biomedicalApplications:heterogeneousnontoxicantibiofoulingsurfaces.ACSAppl.Mater.Interfaces2014,6,19265−19274.■REFERENCES(19)Murthy,R.;Bailey,B.M.;Valentin-Rodriguez,C.;Ivanisevic,(1)Callow,J.A.;Callow,M.E.TrendsinthedevelopmentofA.;Grunlan,M.A.Amphiphilicsiliconespreparedfrombranchedenvironmentallyfriendlyfouling-resistantmarinecoatings.Nat.PEO-silaneswithsiloxanetethers.J.Polym.Sci.,PartA:Polym.Chem.Commun.2011,2,No.244.2010,48,4108−4119.(2)Lejars,M.;Margaillan,A.;Bressy,C.Foulingreleasecoatings:a(20)Martinelli,E.;Suffredini,M.;Galli,G.;Glisenti,A.;Pettitt,M.nontoxicalternativetobiocidalantifoulingcoatings.Chem.Rev.2012,E.;Callow,M.E.;Callow,J.A.;Williams,D.;Lyall,G.Amphiphilic112,4347−4390.blockcopolymer/poly(dimethylsiloxane)(PDMS)blendsandnano-(3)Callow,M.E.;Callow,J.E.Marinebiofouling:astickyproblem.compositesforimprovedfouling-release.Biofouling2011,27,529−Biologist2002,49,10−14.541.(4)Yebra,D.M.;Kiil,S.;Dam-Johansen,K.Antifouling(21)Røn,T.;Javakhishvili,I.;Hvilsted,S.;Jankova,K.;Lee,S.technologypast,presentandfuturestepstowardsefficientandUltralowfrictionwithhydrophilicpolymerbrushesinwaterasenvironmentallyfriendlyantifoulingcoatings.Prog.Org.Coat.2004,segregatedfromsiliconematrix.Adv.Mater.Interfaces2016,3,50,75−104.No.1500472.(5)Magin,C.M.;Cooper,S.P.;Brennan,A.B.Non-toxic(22)Rufin,M.A.;Barry,M.E.;Adair,P.A.;Hawkins,M.L.;antifoulingstrategies.Mater.Today2010,13,36−44.Raymond,J.E.;Grunlan,M.A.ProteinresistanceefficacyofPEO-(6)Konstantinou,I.K.;Albanis,T.A.Worldwideoccurrenceandsilaneamphiphiles:DependenceonPEO-segmentlengthandeffectsofantifoulingpaintboosterbiocidesintheaquaticenviron-concentration.ActaBiomater.2016,41,247−252.ment:areview.Environ.Int.2004,30,235−248.(23)Shivapooja,P.;Yu,Q.;Orihuela,B.;Mays,R.;Rittschof,D.;(7)Wyszogrodzka,M.;Haag,R.SynthesisandCharacterizationofGenzer,J.;López,G.P.ModificationofSiliconeElastomerSurfacesGlycerolDendrons,Self-AssembledMonolayersonGold:ADetailedwithZwitterionicPolymers:Short-TermFoulingResistanceandStudyofTheirProteinResistance.Biomacromolecules2009,10,TriggeredBiofoulingRelease.ACSAppl.Mater.Interfaces2015,7,1043−1054.25586−25591.(8)Sommer,S.;Ekin,A.;Webster,D.C.;Stafslien,S.J.;Daniels,J.;(24)Liu,Y.;Leng,C.;Chisholm,B.;Stafslien,S.;Majumdar,P.;VanderWal,L.J.;Thompson,S.E.M.;Callow,M.E.;Callow,J.A.AChen,Z.SurfaceStructuresofPDMSIncorporatedwithQuaternarypreliminarystudyonthepropertiesandfouling-releaseperformanceAmmoniumSaltsDesignedforAntibiofoulingandFoulingReleaseofsiloxane−polyurethanecoatingspreparedfrompoly-Applications.Langmuir2013,29,2897−2905.(dimethylsiloxane)(PDMS)macromers.Biofouling2010,26,961−(25)Wan,F.;Pei,X.;Yu,B.;Ye,Q.;Zhou,F.;Xue,Q.Grafting972.PolymerBrushesonBiomimeticStructuralSurfacesforAnti-Algae(9)Bodkhe,R.B.;Thompson,S.E.M.;Yehle,C.;Cilz,N.;Daniels,FoulingandFoulRelease.ACSAppl.Mater.Interfaces2012,4,4557−J.;Stafslien,S.J.;Callow,M.E.;Callow,J.A.;Webster,D.C.The4565.effectofformulationvariablesonfouling-releaseperformanceof(26)Yeh,S.-B.;Chen,C.-S.;Chen,W.-Y.;Huang,C.-J.Modificationstratifiedsiloxane−polyurethanecoatings.J.Coat.Technol.Res.2012,ofsiliconeelastomerwithzwitterionicsilanefordurableantifouling9,235−249.properties.Langmuir2014,30,11386−11393.(10)Selim,M.S.;El-Safty,S.A.;Azzam,A.M.;Shenashen,M.A.;(27)Ciriminna,R.;Bright,F.V.;Pagliaro,M.EcofriendlyEl-Sockary,M.A.;AboElenien,O.M.Superhydrophobicsilicone/AntifoulingMarineCoatings.ACSSustainableChem.Eng.2015,3,TiO2−SiO2nanorod-likecompositesformarinefoulingrelease559−565.coatings.ChemistrySelect2019,4,3395−3407.(28)Galhenage,T.P.;Hoffman,D.;Silbert,S.D.;Stafslien,S.J.;(11)Iguerb,O.;Poleunis,C.;Mazeas,F.;Compere,C.;Bertrand,P.Daniels,J.;Miljkovic,T.;Finlay,J.A.;Franco,S.C.;Clare,A.S.;Antifoulingpropertiesofpoly(methylmethacrylate)filmsgraftedwithNedved,B.T.;etal.Fouling-releaseperformanceofsiliconeoil-2738https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739 11Langmuirpubs.acs.org/LangmuirArticlemodifiedsiloxane-polyurethanecoatings.ACSAppl.Mater.Interfaces(45)Cassé,F.;Stafslien,S.J.;Bahr,J.A.;Daniels,J.;Finlay,J.A.;2016,8,29025−29036.Callow,J.A.;Callow,M.E.Combinatorialmaterialsresearchapplied(29)Wei,C.;Zhang,G.;Zhang,Q.;Zhan,X.;Chen,F.SiliconeOil-tothedevelopmentofnewsurfacecoatingsV.ApplicationofaInfusedSlipperySurfacesBasedonSol−GelProcess-Inducedspinningwater-jetforthesemi-highthroughputassessmentoftheNanocompositeCoatings:AFacileApproachtoHighlyStableattachmentstrengthofmarinefoulingalgae.Biofouling2007,23,BioinspiredSurfaceforBiofoulingResistance.ACSAppl.Mater.121−130.Interfaces2016,8,34810−34819.(46)Starr,R.C.;Jeffrey,A.Z.″UTEX:theculturecollectionofalgae(30)Kavanagh,C.J.;Swain,G.W.;Kovach,B.S.;Stein,J.;attheUniversityofTexasatAustin.J.Phycol.1987,23,1−47.Darkangelo-Wood,C.;Truby,K.;Holm,E.;Montemarano,J.;Meyer,(47)Mieszkin,S.;Martin-Tanchereau,P.;Callow,M.E.;Callow,J.A.;Wiebe,D.TheEffectsofSiliconeFluidAdditivesandSiliconeA.Effectofbacterialbiofilmsformedonfouling-releasecoatingsfromElastomerMatricesonBarnacleAdhesionStrength.Biofouling2003,naturalseawaterandCobetiamarina,ontheadhesionoftwomarine19,381−390.algae.Biofouling2012,28,953−968.(31)Beigbeder,A.;Mincheva,R.;Pettitt,M.E.;Callow,M.E.;(48)Stafslien,S.J.;Bahr,J.A.;Daniels,J.W.;Wal,L.V.;Nevins,J.;Callow,J.A.;Claes,M.;Dubois,P.Marinefoulingreleasesilicone/Smith,J.;Schiele,K.;Chisholm,B.CombinatorialmaterialsresearchappliedtothedevelopmentofnewsurfacecoatingsVI:Anautomatedcarbonnanotubenanocompositecoatings:ontheimportanceofthespinningwaterjetapparatusforthehigh-throughputcharacterizationnanotubedispersionstate.J.Nanosci.Nanotechnol.2010,10,2972−offouling-releasemarinecoatings.Rev.Sci.Instrum.2007,78,072204.2978.(49)Cassé,F.;Ribeiro,E.;Ekin,A.;Webster,D.C.;Callow,J.A.;(32)Beigbeder,A.;Labruyere,C.;Viville,P.;Pettitt,M.E.;Callow,̀Callow,M.E.LaboratoryscreeningofcoatinglibrariesforalgalM.E.;Callow,J.A.;Bonnaud,L.;Lazzaroni,R.;Dubois,P.Surfaceadhesion.Biofouling2007,23,267−276.andfouling-releasepropertiesofsilicone/organomodifiedmontmor-(50)Majumdar,P.;Crowley,E.;Htet,M.;Stafslien,S.J.;Daniels,J.;illonitecoatings.J.Adhes.Sci.Technol.2011,25,1689−1700.VanderWal,L.;Chisholm,B.J.Combinatorialmaterialsresearch(33)Selim,M.S.;El-Safty,S.A.;El-Sockary,M.A.;Hashem,A.I.;appliedtothedevelopmentofnewsurfacecoatingsXV:AnElenien,O.M.A.;El-Saeed,A.M.;Fatthallah,N.A.Smartphoto-investigationofpolysiloxaneanti-fouling/fouling-releasecoatingsinducedsilicone/TiO2nanocompositeswithdominant[110]exposedcontainingtetheredquaternaryammoniumsaltgroups.ACSComb.surfacesforself-cleaningfoul-releasecoatingsofshiphulls.Mater.Des.Sci.2011,13,298−309.2016,101,218−225.(51)Finlay,J.A.;Callow,M.E.;Ista,L.K.;Lopez,G.P.;Callow,J.(34)Arukalam,I.O.;Oguzie,E.E.;Li,Y.FabricationofFDTS-A.TheinfluenceofsurfacewettabilityontheadhesionstrengthofmodifiedPDMS-ZnOnanocompositehydrophobiccoatingwithanti-settledsporesofthegreenalgaEnteromorphaandthediatomfoulingcapabilityforcorrosionprotectionofQ235steel.J.ColloidAmphora.Integr.Comp.Biol.2002,42,1116−1122.InterfaceSci.2016,484,220−228.(52)Callow,M.E.;Callow,J.A.;Ista,L.K.;Coleman,S.E.;(35)Jung,J.;Li,L.;Yeh,C.-K.;Ren,X.;Sun,Y.AmphiphilicNolasco,A.C.;López,G.P.Useofself-assembledmonolayersofquaternaryammoniumchitosan/sodiumalginatemultilayercoatingsdifferentwettabilitiestostudysurfaceselectionandprimaryadhesionkillfungalcellsandinhibitfungalbiofilmondentalbiomaterials.processesofgreenalgal(Enteromorpha)zoospores.Appl.Environ.Mater.Sci.Eng.,C2019,104,No.109961.Microbiol.2000,66,3249−3254.(36)Ruiz-Sanchez,A.J.;Guerin,A.J.;El-Zubir,O.;Dura,G.;(53)Callow,J.A.;Callow,M.E.;Ista,L.K.;Lopez,G.;Chaudhury,Ventura,C.;Dixon,L.I.;Houlton,A.;Horrocks,B.R.;Jakubovics,N.M.K.TheinfluenceofsurfaceenergyonthewettingbehaviouroftheS.;Guarda,P.-A.;Simeone,G.;Clare,A.S.;Fulton,D.A.PreparationsporeadhesiveofthemarinealgaUlvalinza(synonymEnteromorphaandevaluationoffouling-releasepropertiesofamphiphilicperfluor-linza).J.R.Soc.,Interface2005,2,319−325.opolyether-zwitterioncross-linkedpolymerfilms.Prog.Org.Coat.(54)Sundaram,H.S.;Cho,Y.;Dimitriou,M.D.;Weinman,C.J.;2020,140,No.105524.Finlay,J.A.;Cone,G.;Callow,M.E.;Callow,J.A.;Kramer,E.J.;(37)Alexandridis,P.Amphiphiliccopolymersandtheirapplications.Ober,C.K.Fluorine-freemixedamphiphilicpolymersbasedonCurr.Opin.ColloidInterfaceSci.1996,1,490−501.PDMSandPEGsidechainsforfoulingreleaseapplications.Biofouling(38)Zeng,Q.;Zhu,Y.;Yu,B.;Sun,Y.;Ding,X.;Xu,C.;Wu,Y.-W.;2011,27,589−602.Tang,Z.;Xu,F.-J.AntimicrobialandAntifoulingPolymericAgentsfor(55)Dominguez,A.;Fernandez,A.;Gonzalez,N.;Iglesias,E.;SurfaceFunctionalizationofMedicalImplants.BiomacromoleculesMontenegro,L.DeterminationofCriticalMicelleConcentrationof2018,19,2805−2811.SomeSurfactantsbyThreeTechniques.J.Chem.Educ.1997,74,(39)Kreder,M.J.;Alvarenga,J.;Kim,P.;Aizenberg,J.Designof1227.anti-icingsurfaces:smooth,texturedorslippery?Nat.Rev.Mater.(56)VanOss,C.J.Acidbaseinterfacialinteractionsinaqueous2016,1,No.15003.media.ColloidsSurf.,A1993,78,1−49.(40)Upadhyay,V.;Galhenage,T.;Battocchi,D.;Webster,D.Amphiphilicicephobiccoatings.Prog.Org.Coat.2017,112,191−199.(41)Rahimi,A.;Murphy,M.;Upadhyay,V.;Faiyaz,K.;Battocchi,D.;Webster,D.C.Amphiphilicallymodifiedself-stratifiedsiloxane-glycidylcarbamatecoatingsforanti-icingapplications.J.Coat.Technol.Res.2021,18,83−97.(42)Stafslien,S.;Daniels,J.;Mayo,B.;Christianson,D.;Chisholm,B.;Ekin,A.;Webster,D.;Swain,G.CombinatorialmaterialsresearchappliedtothedevelopmentofnewsurfacecoatingsIV.Ahigh-throughputbacterialbiofilmretentionandretractionassayforscreeningfouling-releaseperformanceofcoatings.Biofouling2007,23,45−54.(43)Bodkhe,R.B.;Stafslien,S.J.;Cilz,N.;Daniels,J.;Thompson,S.E.M.;Callow,M.E.;Callow,J.A.;Webster,D.C.PolyurethaneswithamphiphilicsurfacesmadeusingtelechelicfunctionalPDMShavingorthogonalacidfunctionalgroups.Prog.Org.Coat.2012,75,38−48.(44)Owens,D.K.;Wendt,R.C.Estimationofthesurfacefreeenergyofpolymers.J.Appl.Polym.Sci.1969,13,1741−1747.2739https://dx.doi.org/10.1021/acs.langmuir.0c03446Langmuir2021,37,2728−2739
此文档下载收益归作者所有