《Electrostrictive E ff ect of Materials under High Pressure Revealed by Electrochemical Impedance Spectroscopy - Han et al. - 2021 - Unkn》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleElectrostrictiveEffectofMaterialsunderHighPressureRevealedbyElectrochemicalImpedanceSpectroscopyTaoHan,HaoLiu,JiaWang,ChunxiaoGao,andYonghaoHan*CiteThis:J.Phys.Chem.C2021,125,8788−8793ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Becauseelectrostrictivematerialsarecompletelysealedandconfinedinadiamondanvilcell(DAC),theirstrainandatomicdisplacementexcitedbyelectricfieldcannotbeinsitumeasuredbygeneralmeasurements.Therefore,anexperimentalstudyontheelectrostrictivepropertiesofmaterialsunderhighpressuresbecomesanunexploitedfield.Inthispaper,westudytheelectrostrictiveeffectofCaZrO3underhighpressureswithelectrochemicalimpedancespectroscopy.Intheimpedancespectra,theelectrostrictiveeffectispresentedclearlyintheformofaninductiveloop.Fittedwiththeequivalentcircuitmethod,informationaboutstrainanditsevolutionwithpressurecanbeobtained.■INTRODUCTIONAsmentionedabove,directobservationonelectrostrictioninsideDACishardlypossible.Therefore,newmeasurementsPressuregeneratedbyadiamondanvilcell(DAC)canexceedshouldbeadopted.Herein,electrochemicalimpedancemegabarsandinducetremendouschangesinthematerials1−5spectroscopy(EIS)isappliedtorevealthepressure-dependentpropertiesofstructures,optics,magnetics,andelectrics.AllelectrostrictionofmaterialsinDAC,andtheobjectstudiedisaofthechangeshavetheirownexclusiveresearchmethods.Forferroelectricmaterial,calciumzirconate(CaZrO3).example,pressure-inducedstructuralphasetransitionhasCaZrO3isatypicalelectrostrictivematerial.IthasalargealwaysbeenstudiedwithsynchrotronradiationX-ray4,5anisotropicdielectrictensor,andshowswideapplicationsindiffraction(XRD)andsuperconductingtransitioncanbe29−3132−35366−9solidelectrolytes,sensors,refractories,andhydra-detectedwithelectricalresistanceandmagneticsuscepti-373,9,10tion-resistantmaterials.Athighpressures,theoreticalbilitymeasurements.However,electrostriction,whichisaresearchonCaZrO3mainlyfocusesonfirst-principlesbasicphenomenoninallinsulatorsordielectricstodescribe11−13calculationsofstructure,energystability,andelectronicandelectricfield/polarization-inducedstrain,hashardlybeenlatticedynamicsproperties.38−44Experimentally,thestructuresinvolvedinhigh-pressurestudies,especiallywithDAC.TheDownloadedviaBUTLERUNIVonMay16,2021at11:21:00(UTC).ofCaZrO3underhighpressureshavebeeninvestigatedbychiefreasonisrelatedtoDACsampleconfiguration.synchrotronradiationX-raydiffractionmeasurements,anditToreachhighpressures,thesampleinDACneedstobehasbeenconfirmedthattheorthorhombicphaseofCaZrO3confinedinatinyandsealedchamber.Forstructural,optical,canbestableupto30GPa.45,46Inthispaper,wewillrevealtheandelectricalstudies,theprobesthatarephotonsand/orpressuredependenceofelectrostrictionofCaZrOfromtheSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.3metallicwirescaneasilypenetratediamondanvilsorbeplacedanalysisofelectrochemicalimpedancespectra.Wehopetheinsideasamplechamber.Butforthestudyonelectrostrictionmethodcouldbehelpfulforfindingpressure-enhancedinaopenspace,generalmeasurementsarealwaysconductedelectrostrictioninmaterialsorextendingmethodologyinbyanalyzingatomicdisplacementorstrainofwhichprobesarehigh-pressurescience.14−1920−22laserinterferencevibrometer,capacitance,differ-23entialtransducer,atomicforcemicroscope,andscanning■23,24EXPERIMENTALMETHODStransmissionelectronmicroscope,andthereforecannotbeACaZrO3sampleofpurity99.7%wasobtainedfromAlfaplacedinsideaDAC.Forthosematerialswithlarge25−27Aesar.X-raydiffraction(XRD)showsthatithasanelectrostrictions,pressurealsoleadstostructural,2728orthorhombicphasestructurewithspacegroupofPbmn.optical,andelectricaltransitions.Apressure-inducedchangeinelectrostrictionsisexpectedaswell.However,realelectrostrictivestudiesarestillvoidunderhighpressuressofar.Received:February3,2021ConsideringpressureisanotherimportantdimensiontoRevised:April12,2021endowmaterialswithnewpropertiesaswellastemperaturePublished:April20,2021andchemicalcomposition,itisnecessarytoestablishappropriatemethodsforcharacterizingthechangesofelectrostrictionunderhighpressures.©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpcc.1c010208788J.Phys.Chem.C2021,125,8788−8793
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.NyquistrepresentationofCaZrO3impedancespectraatdifferentpressures:(a)0−1.6GPa,(b)2.6−13.3GPa,(c)14.9−21.3GPa,and(d)23.2−30.5GPa.HighpressurewasgeneratedbyaDACwiththeculethavingadiameterof300μm.Asamplechamberwithdiameter150μmandthickness50μmwasdrilledinthecenterofapreindentedT-301stainlesssteelgasket.Apieceofrubywasusedforpressurecalibration.Twopiecesofplatinumfoilwereplacedonthesampleaselectrodes.ElectrochemicalimpedancespectraweremeasuredwithaSolartron1260impedanceanalyzeranda1296dielectricinterface.Toavoidadditionalimpedance,apressure-transmittingmediumwasnotaddedintothesample.A0.1Vsinesignalwasinputintothesample,anditsfrequencyrangedfrom0.1to107Hz.Figure3.PressuredependencesofinductanceLanditsreciprocalB.Insituhigh-pressureXRDexperimentswereconductedatBL15U1oftheShanghaiSynchrotronRadiationFacility(SSRF).ThedistancebetweenthesampleandthedetectorwascalibratedwithCeO2.XRDspectra(intensityversus2θ)wereobtainedbyintegratingdiffractionpatternswiththeFIT2Dprogram.Siliconeoilwasusedasthepressure-transmittingmedium.■RESULTSANDDISCUSSIONTheimpedancespectraofCaZrO3underahighpressureof30.5GPaareplottedinNyquistrepresentationasshowninFigure4.Pressuredependenceofthecharacteristicrelaxationfrequencyandtimeconstant.Figure1a−d.Foreachspectrum,itconsistsoftwoparts,abigandcompletesemicircleabovetheZ′axisandasmallsemicirculararcunderneath.Accordingtothetheoryofimpedancespectroscopy,thesemicircleaboveZ′axisisofcapacitanceandresultsfromthecharge/dischargeprocessofthesystem(alsoknownasnonfaradicprocess).Thesemi-circulararcunderneathisofinductanceandrelatestosomeelectricalpotentialcontrolledstatevariables(faradicprocess).Inthispaper,ourpurposeistofindthestatevariableonearthresponsibleforthegenerationofsemicirculararcbelowtheZ′axisandstudyitsevolutionunderhighpressures.Figure2.(a)EquivalentcircuitofCaZrO3fordescribingtheelectricalForthematerialwithalargeelectrostrictiveeffect,suchastransportprocesses.(b)FittingNyquistimpedancespectraat10.5CaZrO3,electrostrictivestrainΔQisakindofelectricalGPa.potentialcontrolledstatevariable,hereindenotedasX.Asan8789https://doi.org/10.1021/acs.jpcc.1c01020J.Phys.Chem.C2021,125,8788−8793
2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure5.Z″−fplotsoftheimpedancespectraofCaZrO3atdifferentpressures.(∂Ξ/∂E),B=m·b=(∂IF/∂X)(∂Ξ/∂E),IFisthefaradiccurrent,Eistheelectricpotentialappliedonthegrains,andΞ=dX/dt=dΔX/dtdenotesthechangerateofstrainwithtime.Ineq1,1/Rtand1/(a/B+jω/B)representthecontributionsoftransmissionresistanceandelectrostrictiveeffecttothefaradicprocess,respectively.WhentheACelectricsignalisapplied,theelectrostrictivestrainofCaZrO3showsthefollowingbehavior.Withtheincreaseofelectricpotential,thechangerateofstrainwithtimeincreases.Namely,thelargertheelectricalpotentialE,thefasterthechangerateofstrainwithtime,resultingin∂Ξ/∂E>0.Meanwhile,astheelectricpotentialEincreases,theextentofpolarizationalongtheelectricfieldincreases,causingtheincreaseofcrystallineorderinCaZrO3powdersandsimultaneouslythedecreaseofelectronscatteringbythewallsofferroelectricdomains,andtherefore,∂IF/∂X>0.Finally,B=(∂IF/∂X)(∂Ξ/∂E)>0.Equation1canberewrittenas01111YF==+a1=+RtBB+jωRRjt3+ωL(2)whereR3=a/B>0andL=1/B>0,withthesameunitsasFigure6.(a)SelectedXRDpatternsofCaZrO3asafunctionofresistanceandinductance,respectively.Thus,anequivalentpressureuponcompressionupto30.8GPaatroomtemperature.(b)circuitfordescribingtheelectricaltransportprocessesinPressuredependenceofthed-spacingofCaZrO3.CaZrO3canbeillustratedasshowninFigure2a.CPE1andCPE2aretheconstantphaseelementstorepresentthecharge/alternate-currentelectricsignalisappliedonCaZrO3,non-dischargeactivitiesofnonfaradicprocess,respectively,ingrainsfaradicandfaradicprocessescoexist.InthegrainsofCaZrO3,andgrainboundariesofCaZrO3powders.Consideringthatthethefaradicprocessisdeterminedbybothtransmissionelectrostrictiveeffectmainlyoccursingrains,accordinglyitcanresistanceandelectrostrictiveeffect.Basedonimpedancebeomittedingrainboundaries.Therefore,thefaradicprocessspectroscopytheory,theadmittanceoffaradicprocessY0canFingrainboundariesisonlydeterminedbytheresistance,whichbeexpressedasisrepresentedbyaresistorR2intheequivalentcircuit.011mbBWiththeequivalentcircuit,theimpedancespectraunderYF==+=+highpressurescanbefitted.Figure2bshowstheselectedRttaj+ωωRaj+fittingresultat10.5GPa.Itcanbeseenthattheexperimental11datahavebeenwellfitted,indicatingthatthephysicalpicture=+Ra+jω1describedbytheequivalentcircuitisreasonableandtBB(1)successivelyprovingthattheelectrostrictivestrainofCaZrO3whereRtisthetransmissionresistanceofgrains,ωistheisthestatevariableresponsibleforthegenerationoffrequencyofalternatingcurrent(AC)signala=(∂Ξ/∂X),b=inductance.Fromthefittingresults,thepressuredependences8790https://doi.org/10.1021/acs.jpcc.1c01020J.Phys.Chem.C2021,125,8788−8793
3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleofinductanceLanditsreciprocalBcanbeobtainedasshownAuthorsinFigure3.Herein,parameterBisequaltotheproductof∂IF/TaoHan−StateKeyLaboratorytoSuperhardMaterials,Jilin∂Xand∂Ξ/∂E,whichcanalsobeusedasdirectlyastheUniversity,Changchun130012,ChinaelectrostrictivestrainXtocharacterizetheelectrostrictiveHaoLiu−StateKeyLaboratorytoSuperhardMaterials,Jilinability.OnlythosematerialswithB>0,i.e.,withalargeUniversity,Changchun130012,Chinaelectrostrictiveeffect,cangenerateaninductanceloopintheJiaWang−StateKeyLaboratorytoSuperhardMaterials,Jilinimpedancespectra.InFigure3,thevalueofBdecreasesUniversity,Changchun130012,China;Instituteforlinearlywithpressureincrease,indicatingthattheelectro-InterdisciplinaryBiomassFunctionalMaterialsStudies,JilinstrictiveeffectinCaZrO3issuppressedbypressure.EngineeringNormalUniversity,Changchun130052,ChinaAnotherevidencethatcanprovepressuresuppressingtheChunxiaoGao−StateKeyLaboratorytoSuperhardelectrostrictionofCaZrO3isthechangewithpressureoftheMaterials,JilinUniversity,Changchun130012,China;characteristicrelaxationfrequencyortimeconstantoftheorcid.org/0000-0001-5329-2623inductanceloopinFigure4.Figure5a−dpresentstheCompletecontactinformationisavailableat:impedancespectraofCaZrO3inZ″−frepresentation,inhttps://pubs.acs.org/10.1021/acs.jpcc.1c01020whichvalleycorrespondstotheinductanceloop.ThefrequencyatthevalleybottomisthecharacteristicrelaxationNotesfrequency.Accordingtothetheoryofimpedancespectroscopy,Theauthorsdeclarenocompetingfinancialinterest.parametera(=∂Ξ/∂X)hastheunitoffrequencyanditsreciprocaliscalledtimeconstant,whichcanbeobtainedfrom■thefittingresultsoftheimpedancespectra.BoththeACKNOWLEDGMENTScharacteristicrelaxationfrequencyandtimeconstantcanThisworkwassupportedbytheNationalKeyR&DProgramcharacterizetherecoveryspeedofelectrostriction47,48inofChina(no.2018YFA0305900)andtheNationalNaturalCaZrOoncetheequilibriumstateisslightlybroken.ScienceFoundationofChina(grantnos.11774126,12004134,3Figure4showsthepressure-dependentcharacteristic11674404,and51772125).relaxationfrequencyandtimeconstant.Withanincreaseinpressure,thecharacteristicrelaxationfrequencydecreasesand■REFERENCESthetimeconstantincreases.Itmeansthattherecoveryspeed(1)Zhang,Q.;Chen,C.;Li,N.;Huang,Q.;He,Y.;Liu,X.;Wang,slowsdown.Inotherwords,oncetheequilibriumstateofB.;Zhang,D.;Kim,D.Y.;Wang,Y.;etal.PressureImpactontheelectrostrictioninCaZrO3isbroken,itismoredifficulttoCrystalStructure,Optical,andTransportPropertiesinLayeredrebuildunderhighpressuresthanatambientpressure,furtherOxychalcogenidesBiCuChO(Ch=S,Se).J.Phys.Chem.C2018,122,15929−15936.provingthattheelectrostrictioninCaZrO3hasbeen(2)Nayak,A.P.;Pandey,T.;Voiry,D.;Liu,J.;Moran,S.T.;suppressedbypressure.ButtheelectrostrictioncanbestillSharma,A.;Tan,C.;Chen,C.-H.;Li,L.-J.;Chhowalla,M.;etal.detectedunderhighpressuresofupto30.5GPabecausethePressure-DependentOpticalandVibrationalPropertiesofMonolayercrystallinestructureofCaZrO3remainsstableasshownintheMolybdenumDisulfide.NanoLett.2015,15,346−353.XRDspectraofFigure6.(3)Wang,P.;Kumar,R.;Sankaran,E.M.;Qi,X.;Zhang,X.;Popov,D.;Cornelius,A.L.;Li,B.;Zhao,Y.;Wang,L.VanadiumDiboride■(VB2)SynthesizedatHighPressure:Elastic,Mechanical,Electronic,CONCLUSIONSandMagneticPropertiesandThermalStability.Inorg.Chem.2018,Insummary,wedevelopedamethodtorevealtheelectro-57,1096−1105.strictivepropertiesofmaterialsinasealedsamplechamberof(4)Li,N.;Manoun,B.;Tang,L.;Ke,F.;Liu,F.;Dong,H.;Lazor,P.;diamondanvilcellusingelectrochemicalimpedancespectros-Yang,W.Pressure-InducedStructuralandElectronicTransitionincopy,withwhichtheelectrostrictiveeffectinCaZrO3anditsSr2ZnWO6DoublePerovskite.Inorg.Chem.2016,55,6770−6775.evolutionwithpressurewerestudied.Unlikegeneralmeasure-(5)Cong,R.;Yang,T.;Sun,J.;Wang,Y.;Lin,J.Observationofthementsbyusinglaserinterferencevibrometer,atomicforceSixthPolymorphofBiB3O6:InSituHigh-PressureRamanSpectros-copyandSynchrotronX-rayDiffractionStudiesontheβ-Polymorph.microscopeandetc.ofwhichdetectedparameterforInorg.Chem.2013,52,7460−7466.electrostrictionisatomicdisplacementorstrainXandalways(6)Kim,J.-G.;Hong,S.J.;Kang,H.;Suh,D.AnomalousNegativecouldbezeroorundetectableincompletelyconfinedspace,ResistancePhenomenainTwistedSuperconductingNanowireYarns.theimpedancespectroscopyconsidersdetectablechangeACSNano2020,14,3337−3343.tendencyincludingm(=∂IF/∂X)andb(=∂Ξ/∂E)insteadof(7)Matsumoto,R.;Hou,Z.;Hara,H.;Adachi,S.;Tanaka,H.;Xasmeasuredparameters.BothmandbarebiggerthanzeroYamamoto,S.;Saito,Y.;Takeya,H.;Irifune,T.;Terakura,K.;etal.evenforCaZrO3sealedinadiamondanvilcell,resultinginCrystalGrowth,StructuralAnalysis,andPressure-InducedSuper-thattheelectrostrictioncanbepresenteddirectlyintheformconductivityinaAgIn5Se8SingleCrystalExploredbyaData-Drivenofaninductiveloopintheimpedancespectra.ThismethodisApproach.Inorg.Chem.2020,59,325−331.effectiveandconvenientandpaveswayforthestudyof(8)Sankar,R.;Peramaiyan,G.;PanneerMuthuselvam,I.;Wen,C.-electrostrictionunderhighpressures.ItwillbealsoexpectedY.;Xu,X.;Chou,F.C.SuperconductivityinaMisfitLayered(SnS)1.15(TaS2)Compound.Chem.Mater.2018,30,1373−1378.thatwecanfindsomematerialswithpressure-enhanced(9)Cai,W.;Lin,W.;Li,L.-H.;Malliakas,C.D.;Zhang,R.;electrostrictiveeffectsinthefuture.Groesbeck,M.;Bao,J.-K.;Zhang,D.;Sterer,E.;Kanatzidis,M.G.;etal.Pressure-InducedSuperconductivityandFlattenedSe6Ringsin■AUTHORINFORMATIONtheWideBandGapSemiconductorCu2I2Se6.J.Am.Chem.Soc.2019,141,15174−15182.CorrespondingAuthor(10)Pocha,R.;Johrendt,D.;Ni,B.;Abd-Elmeguid,M.M.CrystalYonghaoHan−StateKeyLaboratorytoSuperhardMaterials,Structures,ElectronicProperties,andPressure-InducedSuper-JilinUniversity,Changchun130012,China;orcid.org/conductivityoftheTetrahedralClusterCompoundsGaNb4S8,0000-0001-6835-5148;Email:hanyh@jlu.edu.cnGaNb4Se8,andGaTa4Se8.J.Am.Chem.Soc.2005,127,8732−8740.8791https://doi.org/10.1021/acs.jpcc.1c01020J.Phys.Chem.C2021,125,8788−8793
4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(11)Pan,H.;Zhang,J.;Jia,X.;Xing,H.;He,J.;Wang,J.;Wen,F.(29)Dudek,M.;Drozdż-Cieṡla,E.SomeobservationsonsynthesiśLargeelectrostrictiveeffectandhighopticaltemperaturesensinginandelectrolyticpropertiesofnonstoichiometriccalciumzirconate.J.Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.18Er0.02)TiO3luminescentfer-AlloysCompd.2009,475,846−854.roelectrics.Ceram.Int.2018,44,5785−5789.(30)Dunyushkina,L.A.;Pankratov,A.A.;Gorelov,V.P.;Brouzgou,(12)Ardimas;Putson,C.;Muensit,N.HighelectromechanicalA.;Tsiakaras,P.DepositionandCharacterizationofY-dopedCaZrO3performanceofmodifiedelectrostrictivepolyurethanethree-phaseElectrolyteFilmonaPorousSrTi0.8Fe0.2O3-δSubstrate.Electrochim.composites.Compos.Sci.Technol.2018,158,164−174.Acta2016,202,39−46.(13)Jaaoh,D.;Putson,C.;Muensit,N.Deformationonsegment-(31)Kuzmin,A.V.;Plekhanov,M.S.;Lesnichyova,A.S.Influencestructureofelectrostrictivepolyurethane/polyanilineblends.Polymerofimpuritiesonthebulkandgrain-boundaryconductivityof2015,61,123−130.CaZrO3-basedproton-conductingelectrolyte:Adistributionof(14)Jin,L.;Qiao,J.;Hou,L.;Wang,L.;Zhang,L.;Lu,X.;Du,H.;relaxationtimestudy.Electrochim.Acta2020,348,No.136327.Wei,X.;Yan,Y.;Liu,G.HighelectrostrictiveeffectinLa3+-doped(32)Wang,X.;Liu,T.;Yu,J.;Li,L.TheeffectofFedopingontheBa(Zr0.2Ti0.8)O3lead-freeferroelectrics.J.AlloysCompd.2019,776,electricalconductivitiesofCaZrO3anditssensingperformancein599−605.limitingcurrentoxygensensor.J.AlloysCompd.2018,768,838−846.(15)Wongtimnoi,K.;Guiffard,B.;Bogner-VandeMoortele,A.;̀(33)Wang,X.;Liu,T.;Yu,J.;Mo,Y.;Yi,M.;Li,J.;Li,L.Seveyrat,L.;Gauthier,C.;Cavaillé,J.Y.Improvementofelectro-PreparationandelectricalpropertyofCaZr0.7M0.3O3(M=Fe,Crstrictivepropertiesofapolyether-basedpolyurethaneelastomerfilledandCo)densediffusionbarrierforapplicationinlimitingcurrentwithconductivecarbonblack.Compos.Sci.Technol.2011,71,885−oxygensensor.Sens.Actuators,B2018,266,455−462.892.(34)Kalyakin,A.S.;Lyagaeva,J.Y.;Volkov,A.N.;Medvedev,D.A.(16)Jin,L.;Luo,W.;Jing,R.;Qiao,J.;Pang,J.;Du,H.;Zhang,L.;UnusualoxygendetectionbymeansofasolidstatesensorbasedonaHu,Q.;Tian,Y.;Wei,X.;etal.HighdielectricpermittivityandCaZr0.9In0.1O3−δproton-conductingelectrolyte.J.Electroanal.electrostrictivestraininawidetemperaturerangeinrelaxorChem.2019,844,23−26.ferroelectric(1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/(35)André,R.S.;Zanetti,S.M.;Varela,J.A.;Longo,E.Synthesisby3)O3solidsolutions.Ceram.Int.2019,45,5518−5524.achemicalmethodandcharacterizationofCaZrO3powders:(17)Jin,L.;Luo,W.;Hou,L.;Tian,Y.;Hu,Q.;Wang,L.;Zhang,L.;Potentialapplicationashumiditysensors.Ceram.Int.2014,40,Lu,X.;Du,H.;Wei,X.;etal.Highelectricfield-inducedstrainwith16627−16634.ultra-lowhysteresisandgiantelectrostrictivecoefficientinbarium(36)Zou,Y.;Gu,H.;Huang,A.;Fu,L.;Li,G.Fabricationandstrontiumtitanatelead-freeferroelectrics.J.Eur.Ceram.Soc.2019,39,propertiesofinsituintergranularCaZrO3modifiedmicroporous295−304.magnesiaaggregates.Ceram.Int.2020,46,16956−16965.(18)Liu,X.;Li,F.;Zhai,J.;Shen,B.;Li,P.;Zhang,Y.;Liu,B.(37)Xu,T.;Su,Y.;Shi,T.;Zhang,X.ImprovinghydrationEnhancedelectrostrictiveeffectsinnonstoichiometric0.99Bi0.505-resistanceofMgO−CaOceramicsbyinsitusynthesizedCaZrO3(Na0.8K0.2)0.5-xTiO3-0.01SrTiO3lead-freeceramics.Mater.Res.coatingspreparedusinganon-hydrolyticsol.Ceram.Int.2021,47,Bull.2018,97,215−221.2165−2171.(19)Jin,L.;Qiao,J.;Hou,L.;Tian,Y.;Hu,Q.;Wang,L.;Lu,X.;(38)Rashid,M.;Behram,R.B.;Aziz,F.;Mahmood,A.;Kattan,N.Zhang,L.;Du,H.;Wei,X.;etal.AstrategyforobtaininghighA.;Ramay,S.M.OptoelectronicpressuredependentstudyofalkalineelectrostrictivepropertiesanditsapplicationinbariumstannateearthbasedzirconatesAZrO3(A=Ca,Ba,Sr)usingab-initiotitanatelead-freeferroelectrics.Ceram.Int.2018,44,21816−21824.calculations.Eur.Phys.J.B2020,93,No.162.(20)Nesser,H.;Debéda,H.;Yuan,J.;Colin,A.;Poulin,P.;Dufour,(39)Alay-e-Abbas,S.M.;Nazir,S.;Cottenier,S.;Shaukat,A.I.;Ayela,C.All-organicmicroelectromechanicalsystemsintegratingEvaluationofthermodynamics,formationenergeticsandelectronicelectrostrictivenanocompositeformechanicalenergyharvesting.propertiesofvacancydefectsinCaZrO3.Sci.Rep.2017,7,No.8439.NanoEnergy2018,44,1−6.(40)Tian,H.;Kuang,X.-Y.;Mao,A.-J.;Yang,Y.;Xu,C.;(21)Zhang,J.W.;Lebrun,L.;Guiffard,B.;Cottinet,P.J.;Sayedaghaee,S.O.;Bellaiche,L.StructuralphasesarisingfromBelouadah,R.;Guyomar,D.;Garbuio,L.Influenceofcoronapolingreconstructiveandisostructuraltransitionsinhigh-melting-pointontheelectrostrictivebehaviorofcellularpolypropylenefilms.Sens.oxidesunderhydrostaticpressure:Afirst-principlesstudy.Phys.Rev.Actuators,A2012,175,87−93.B:Condens.Matter2018,97,No.020103.(22)Lebrun,L.;Guyomar,D.;Guiffard,B.;Cottinet,P.J.;Putson,(41)Barandiarán,Z.;Bettinelli,M.;Seijo,L.ColorControlofC.TheCharacterisationoftheharvestingcapabilitiesofanPr(3+)LuminescencebyElectron-HoleRecombinationEnergyelectrostrictivepolymercomposite.Sens.Actuators,A2009,153,TransferinCaTiO3andCaZrO3.J.Phys.Chem.Lett2017,8,251−257.3095−3100.(23)Choi,S.-Y.;Jeong,S.-J.;Lee,D.-S.;Kim,M.-S.;Lee,J.-S.;Cho,(42)Hou,Z.F.AbinitiocalculationsofelasticmodulusandJ.H.;Kim,B.I.;Ikuhara,Y.GiganticElectrostraininDuplexelectronicstructuresofcubicCaZrO3.Phys.B2008,403,2624−StructuredAlkalineNiobates.Chem.Mater.2012,24,3363−3369.2628.(24)Chen,B.;Li,T.;Dong,Q.;Mosconi,E.;Song,J.;Chen,Z.;(43)Stoch,P.;Szczerba,J.;Lis,J.;Madej,D.;Pędzich,Z.CrystalDeng,Y.;Liu,Y.;Ducharme,S.;Gruverman,A.;etal.LargestructureandabinitiocalculationsofCaZrO3.J.Eur.Ceram.Soc.electrostrictiveresponseinleadhalideperovskites.Nat.Mater.2018,2012,32,665−670.17,1020−1026.(44)Brik,M.G.;Ma,C.G.;Krasnenko,V.First-principles(25)Mishra,K.K.;Ravindran,T.R.HighpressureRamancalculationsofthestructuralandelectronicpropertiesofthecubicspectroscopicstudiesoftherelaxorferroelectric0.85Pb(Zn1/3Nb2/CaZrO3(001)surfaces.Appl.Surf.Sci.2013,608,146−153.3)O3-0.15PbTiO3.AIPAdv.2015,5,No.077127.(45)Ross,N.L.;Chaplin,T.D.CompressibilityofCaZrO3(26)Ahart,M.;Somayazulu,M.;Ye,Z.-G.;Cohen,R.E.;Mao,H.-perovskite:ComparisonwithCa-oxideperovskites.J.SolidStatek.;Hemley,R.J.High-pressureBrillouinscatteringofPb(Mg1/Chem.2003,172,123−126.3Nb2/3)O3.Phys.Rev.B:Condens.Matter2009,79,No.132103.(46)Yang,X.;Li,Q.;Liu,R.;Liu,B.;Jiang,S.;Yang,K.;Liu,J.;(27)Wang,L.;Wang,K.;Zou,B.Pressure-InducedStructuralandChen,Z.;Zou,B.;Cui,T.;etal.Anovelpressure-inducedphaseOpticalPropertiesofOrganometalHalidePerovskite-BasedFor-transitioninCaZrO3.CrystEngComm2014,16,No.4441.mamidiniumLeadBromide.J.Phys.Chem.Lett.2016,7,2556−2562.(47)Mishra,K.K.;Sivasubramanian,V.;Arora,A.K.;Pradhan,D.(28)Samara,G.;Venturini,E.;Morosin,B.Pressure-inducedphaseAnomalousbehaviorofacousticphononmodeandcentralpeakintransitioninPLZT:aneutrondiffractionanddielectricstudy.J.Phys.:Pb(Zn1/3Nb2/3)0.85Ti0.15O3singlecrystalstudiedusingBrillouinConf.Ser.2008,121,No.022024.scattering.J.Appl.Phys.2012,112,No.114109.8792https://doi.org/10.1021/acs.jpcc.1c01020J.Phys.Chem.C2021,125,8788−8793
5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(48)Chen,B.;Li,T.;Dong,Q.;Mosconi,E.;Song,J.;Chen,Z.;Deng,Y.;Liu,Y.;Ducharme,S.;Gruverman,A.;etal.Largeelectrostrictiveresponseinleadhalideperovskites.Nat.Mater.2018,17,1020−1026.8793https://doi.org/10.1021/acs.jpcc.1c01020J.Phys.Chem.C2021,125,8788−8793
此文档下载收益归作者所有