《Application of Localized Surface Plasmon Resonance Spectroscopy to Investigate a Nano − Bio Interface ̌ - Kastner et al. - 2021 - Unknow》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/LangmuirArticleApplicationofLocalizedSurfacePlasmonResonanceSpectroscopytoInvestigateaNano−BioInterfaceRineaBarbir,BarbaraPem,NikolinaKalcec,StephanKastner,KatiaPodlesnaia,AndreaCsǎki,́WolfgangFritzsche,andIvanaVinkovićVrceǩ*CiteThis:Langmuir2021,37,1991−2000ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Theaccuratedeterminationofeventsattheinterfacebetweenabiologicalsystemandnanomaterialsisnecessaryforefficacyandsafetyevaluationofnovelnano-enabledmedicalproducts.Investigatingtheinteractionofproteinswithnanoparticles(NPs)andtheformationofproteincoronaonnanosurfacesisparticularlychallengingfromthemethodologicalpointofviewduetothemultiparametriccomplexityofsuchinteractions.Thisstudydemonstratedtheapplicationoflocalizedsurfaceplasmonresonance(LSPR)spectroscopyasalow-costandrapidbiosensingtechniquethatcanbeusedinparallelwithothersophisticatedmethodstomonitornano−biointerplay.Interactionofcitrate-coatedgoldNPs(AuNPs)withhumanplasmaproteinswasselectedasacasestudytoevaluatetheapplicabilityandvalueofscientificdataacquiredbyLSPRascomparedtofluorescencespectroscopy,whichisoneofthemostusedtechniquestostudyNPinteractionwithbiomolecules.LSPRresultsobtainedforinteractionofAuNPswithbovineserumalbumin,glycosylatedhumantransferrin,andnon-glycosylatedrecombinanthumantransferrincorrelatednicelywiththeadsorptionconstantsobtainedbyfluorescencespectroscopy.Thisability,complementedbyitsfastoperationandreliability,makestheLSPRmethodologyanattractiveoptionfortheinvestigationofanano−biointerface.14−16■INTRODUCTIONNMs.Oneofthecommonlyusedmethodsfortheexplorationofnano−biointeractionsisfluorescencequench-Nanomaterials(NMs)havealreadybeenimplementedining,whichreferstoanyprocessthatleadstoadecreaseinbiomedicineatahighratebymeansofdiagnosticandfluorescenceintensityofasampleunderstudyandisusuallyDownloadedviaUNIVOFNEWMEXICOonMay16,2021at16:58:14(UTC).therapeuticmedicaltoolswithimprovedpharmacologicaltheresultofcloseproximity(<10nm)oftheinvolvedprofiles,effectiveness,andsafety.ForanytypeofNMmoleculefluorophoreandquencher.Itcanbeastaticoraapplicationinbiomedicine,carefulevaluationofquality,Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.efficacy,andsafetyattributesshouldbeperformed.Eachofdynamicprocess.Staticquenchingisaresultoftheformationofanon-fluorescentgroundstatecomplexbetweenthetheseattributeslargelydependsonNMbiologicalactionand1−6fluorophoreandthequencher,whereasdynamicquenchingtheirinteractionwithcomponentsofbiologicalsystems.occurswhenaquenchercollideswiththefluorophoreduringOneofthemoststudiedtypesofnano−biointeractionsrelates17−20thelifetimeoftheexcitedstate.MostproteinsaretotheadsorptionofproteinsonthenanosurfaceimmediatelycharacterizedbyintrinsicfluorescenceoriginatingfromtheafterNMexposuretobiologicalmedia.Alayerofadsorbed17,21aromaticaminoacidresidues.Whenboundtonano-proteinsonananosurfaceisknownasproteincorona,whichsurfaces,thefluorescenceintensityoftheseresiduesischangestheNMpropertiesandstabilityandmaymodulatethe7−9quenchedandtheemissionpeakmaximumisshiftedduetoresponseofabiologicalsystemduringsuchinteractions.thechangeinthechemicalenvironmentaroundtheProteincoronaformationimpactsnotonlyNMsbutalsoproteinsthemselvessincetheirfunctionalityorstabilitymaybeimpaired.10EfficacyandsafetyprofilingofNMsdesignedforReceived:December17,2020biomedicalapplicationsdemandsthereforecloseinsightintoRevised:January14,2021themechanismofproteinbindingandinteractionswiththesePublished:January26,2021NMsbyusingreliable,simple,andcost-effectivemethodo-11−13logicalapproaches.Spectroscopictechniquesrepresentagoodoptionduetoopticalpropertiesofbothproteinsand©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c035691991Langmuir2021,37,1991−2000
1Langmuirpubs.acs.org/LangmuirArticle11with10%(v/v)HNO(MerckSuprapur,Darmstadt,Germany)andfluorophores.Thefluorescencequenchingcanbedescribed3bytheStern−Volmerequationthatprovidesinformationonrinsedwithultrapurewater(UPW).Stocksolutionsoftheproteinsbindingconstantsandanumberofbindingsites.11,21,22Thewerepreparedin150mMphosphatebuffersolution(PBS,pH=7.4).methodiswidelyusedbecauseitissimple,accessible,andSynthesisandCharacterizationofCitrateGoldNano-particles.Citrate-cappedAuNPsweresynthesizedusingapreviouslysensitiveandtheprinciplesoftheStern−Volmerrelationship36,37publishedmethoddevelopedbyTurkevichetal.andFrens.20arewellknownandestablished.Briefly,0.5mLof100mMHAuCl4wasaddedto48mLofUPWandMorerecently,techniquesbasedonasurfaceplasmonthesolutionwaslefttoboilunderconstantstirring.Subsequently,1.5resonance(SPR)propertyofmetalshavebeenusedtostudymLofsodiumcitrate(1%w/v)wasaddedandthesolutionwaslefttointeractionsbetweenmetallicnanoparticles(NPs)andcooldownatroomtemperature.PurificationofpreparedAuNPswasbiomolecules.SPRoriginatesfromtheoscillationoffreeperformedbycentrifugationat11,000gfor30min.Theprecipitateelectronsintheconductionbandofametal.UV/VISlightthatwasresuspendedinUPWandstoredinthedarkat4°C.matchesthefrequencyofoscillationwillbeabsorbedbytheInAuNPcolloidalsuspensions,totalgold(Au)concentrationwasdeterminedusinganAgilentTechnologies7500cxinductivelycoupledmetallicsurface,resultingintheenhancementofalocalplasmamassspectrometer(ICP-MS)(Agilent,Waldbronn,Ger-electromagneticfield.SinceNPsaresmallerthanthemany).CalibrationwascarriedoutwithAustandardsolutions(1000wavelengthofincidentlight,thechargedensityisredistributedmg/Lin5%HNO)purchasedfromMerck(Darmstadt,Germany),3andoscillateslocallyaroundtheNP,whichisknownaswhichweredilutedinamixtureof5%HNO3and1%HCl.23−26localizedSPR(LSPR).ThispropertyiswidelyutilizedinHydrodynamicdiameter(dH),sizedistribution,andzeta(ζ)potentialsensors,opticaldevices,lenses,antennas,datastorage,offreshlysynthesizedAuNPswereobtainedbydynamic(DLS)and25electrophoreticlightscattering(ELS)methodsonaZetasizerNanowaveguides,microscopy,andmanyotherfields.AstheabsorbanceintensityandwavelengthofSPRpeakmaximumZS(Malvern,UK)equippedwith523nmgreenlaserata173°angle.(λmax)aredependentonNPcharacteristicsandtherefractiveDLSresultsarereportedfromthesize−volumedistributionfunction,indexofthesurroundingmedium,theabsorbancespectrumasanaverageof10measurements.TheζpotentialvalueswereobtainedfromtheELSmeasurementusingtheHenryequationwithwillthereforerespondtochangesinNPcharacteristics(e.g.,theSmoluchowskiapproximation.Theresultsaregivenasanaverageaggregation)orchangesoftheimmediateenvironment(duetoofthreemeasurements.DatawereprocessedbytheZetasizersoftware26−29ligandadsorption).Trackingthespectralchanges6.32(MalvernInstruments).followingtheexposureofNPs(eitherimmobilizedonachipTheshapeandprimarysizeofAuNPsweredeterminedbyorfreeinsolution)totheanalyteofinterestisthebasisofthetransmissionelectronmicroscopy(TEM,902A;CarlZeissMeditecLSPRmethodinbiosensing.ThetechniquecanbeusedtoAG,Jena,Germany).ThesamplesweredepositedonaFormvar-monitorparametersofthenano−biointeractionsuchascoatedcoppergrid(SPISupplies,WestChester,PA,USA)andair-proteinbindingkineticsonnanosurfaces.30−33TheLSPRdriedatroomtemperature.Themicroscopeoperatedinbright-fieldtechniqueisasensitive,label-free,simple,andcheaptechniquemodeatanaccelerationvoltageof80kV,andtheimageswerecapturedwithaCanonPowerShotS50camera.TheaverageAuNPthatoffersdetection,quantification,and/orbindingcharacter-primarydiameter(d)wasmeasuredfromthemicrographsusingtheizationofdifferentanalyteswithouttheneedforsample25,34,35ImageJprocessingsoftware.Primaryparticlesweredistinguishedfrompurification.Nevertheless,theuseofLSPRforAuNPaggregatesbytracingmanually.Altogether,atleast100determiningNPs−proteinbindingaffinityandkineticshasparticlesperparticletypeweremeasured.stillnotbeenwidelyapplied.TheUV/VISspectraofNPsinwaterwererecordedonaCARYThisstudyaimstoevaluateapplicability,accuracy,and300spectrophotometer(VarianInc.,Australia),withthetemperaturesimplicityofLSPRspectroscopyformonitoringtheNPs−maintainedat25°C.Themeasurementswereperformedinaquartzproteininteractionbycomparingitwiththewell-establishedcuvettewithanopticalpathof1cminawavelengthrangeof400−fluorescencespectroscopy.Duetoahugeamountofscientific700nm.FluorescenceSpectroscopyMeasurements.FluorescencedataongoldNPs(AuNPs)thatisavailableforpropermeasurementswerecarriedoutusinga10mmpathlengthquartzcomparison,citrate-cappedAuNPswereusedasastandardcuvetteonanAgilentCaryEclipsefluorimeter(SantaClara,CA,NMtypewithexcellentopticalproperties.TheirinteractionUSA)at25°C.Fluorescencespectroscopywasusedfortwodifferentwithbovineserumalbumin(BSA),glycosylatedhumanexperimentaldesigns.transferrin(hTRF),andnon-glycosylatedrecombinantInthefirstapproach,fluorescencequenchingoftheintrinsichumantransferrin(recTRF)werestudied,whiletheselectionproteinfluorescencewasobservedbyincubatingdifferentconcen-ofproteinswasbasedontheirabundanceinplasma,theirtrationsofAuNPsintherangefrom0.75to15.05pMwithaconstantfrequentappearanceinproteincoronasaroundNPs,1andconcentrationofproteins(0.2μM).Thereasonforusingdiluteddiversityoftheirstructureandglycosylationpatterns.ObtainedAuNPdispersionswastoavoidtheintrinsicabsorptionofAuNPsand38resultsclearlydemonstratedtheapplicabilityofLSPRconsequentlytheinnerfiltereffect.Throughoutthemeasurements,excitationandemissionslitwidthsweresetat5.0and10.0nm,spectroscopyandfostertheirwideracceptanceinthefieldofrespectively.Awavelengthof280nmwasusedfortheexcitationofnanomedicineandnanosafety.proteins,andtheemissionfluorescencespectraweremeasuredintherangefrom300to450nm.Priortomeasurements,areactionmixture■MATERIALSANDMETHODSconsistingofAuNPsandproteinswasincubatedfor10minat25°C.ReagentsandChemicals.Tetrachloroauric(III)acid(HAuCl4),Obtainedresultswereusedtocalculatethebindingconstantsbysodiumcitrate,aceticacid(CH3COOH,99.5%),hydrochloricacidStern−Volmerequation(eq1):(HCl,37%),andhydrogenperoxidesolution(H2O2,30%)werepurchasedfromSigma-AldrichChemieGmbH(Munich,Germany).F0=+11kKq0τ=+[SVAuNPs]Rotisoland3-triethoxysilylpropylamine(APTES)werepurchasedF(1)fromCarlRothGmbH&Co.,KG(Karlruhe,Germany).BSA(productnumberA-7906;Sigma-AldrichChemieGmbH,Steinheim,whereF0andFrepresentthemaximumofproteinfluorescenceintheGermany)andhTRFandrecTRF(productnumbersPRO-315andabsenceandinthepresenceofAuNPs,respectively;kqisthePRO-747;ProSpecBio,Rehovot,Israel)wereusedasreceivedquenchingconstant,whichindicatestheefficiencyofquenching;withoutfurtherpurification.Priortouse,allglasswarewascleaned[AuNPs]isthemolarconcentrationofAuNPs;KSVistheStern−1992https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
2Langmuirpubs.acs.org/LangmuirArticleVolmerconstant;andτ0isthelifetimeofproteinfluorescence(TrpImmobilizationofNPsonthesurfaceishighlydependentontheresidue)intheabsenceofAuNPs.particletypeandconcentration.Therefore,20μLoffreshlyThemolarAuNPconcentrationwascalculatedusingeq2:synthesizedsphericalAuNPsolution(1.15×1010particles/mL)waspipettedinthecenterofthechipfollowedby30minincubationmolgijjmolyzz[]Au()L×Ar()molatroomtemperatureanddryingundergentlenitrogenflow.A[AuNPs]=jzgcustom-designedLSPRinstrumentconsistedofamicrofluidickL{m()(2)chamberconnectedtoaperistalticpump(IsmatecReglo-ICC,molCole-ParmerGmbH,Wertheim,Germany),halogenlightsourceHLwhere[Au]isthemolarconcentrationofAu,Aristheatomicmassof−2000−FHSA(OceanOptics,USA),andaUV/VISlinearAu(196.97g/mol),andmisthemass(m)of1molofAuNPsphotodiodearrayspectrometerUSB2000+(OceanOptics,USA),ascalculatedaccordingtoeq3:showninFigure1.m(g)=×ρijjgyzzV(nm3)j3zknm{(3)Ineq3,ρisthedensityofgold(1.049×10−20g/nm3)andVisthevolumeofoneAuNP.ForsphericalAuNPs,volumeiscalculatedbasedoneq4:334××rπV(nm)=3(4)whererrepresentstheradiusofAuNPscalculatedasahalfofAuNPdiameterobtainedfromTEMimages(dTEM).Inthesecondapproach,AuNPconcentrationwaskeptconstantat60μM,whileproteinconcentrationswereincreased.Awavelengthof280nmwasusedfortheexcitationoftheproteins,andtheemissionfluorescencespectraweremeasuredintherangefrom300to450nm.Priortomeasurement,eachreactionmixtureconsistingofAuNPsandFigure1.(a)Custom-designedLSPRinstrumentconsistedofaproteinswasincubatedfor10minat25°C.Throughoutthemicrofluidicchamberconnectedtoasyringepump,halogenlightmeasurements,excitationandemissionslitwidthsweresetat5.0andsource,andUV/VISlinearphotodiodearrayspectrometer.(b)10.0nm,respectively.ConcentrationrangesforBSA,hTRF,andMicrofluidicchamberwithdimensions25×16mmwiththechiprecTRFwereasfollows:0.15−0.50,0.3−0.65,and0.4−0.75μM.inside.Arrowsrepresenttheright(red)andleft(blue)fluidicflowUponAuNPs−proteininteraction,initialfluorescenceintensitiesinsideofthechamber.(fluorescenceintensitiesofloneprotein)aresubtractedfromfluorescenceintensitiesofproteinaftertheadditionofNPsinordertocalculateΔFvalues.ObtainedresultswereusedtocalculatePriortoeverymeasurement,theassembledchamberwasflushedconstantsofproteinadsorptiononthenanosurfaceusingthemodifiedwithPBSfor10minandthespectraofthelampwererecorded.ALangmuirequation(eq5):custom-builtPythonprogramwasusedforcontrollingthepumpandΔFK×[protein]thustheflowinthechamber.Measurementswerecarriedoutby=flushingthedifferentconcentrationsofproteinsolutionsinPBSoverΔFmax1p+×[Krotein](5)thechipinthechamberusingthefollowingprocedure.First,PBSwasConstantsofbindingwerecalculatedusingamodifiedlinearformofflushedthroughthechamberfor6minandthentheproteinsolutionLangmuirequation(eq6):for20mininordertoachievecompletebindingoftheproteinsfortheimmobilizedcitAuNPs.Poorlyboundproteinsweredissociatedby111=+flushingwithPBSfor12min.InordertoensurethequalityoftheΔFKF×Δmax×[protein]ΔFmax(6)measurement,foreveryperformedexperiment,anewchipwasusedsinceacompletesurfaceregenerationcouldnotbeachievedevenwithAdditionally,linearplotspresentingtheLangmuircurveweremadehighconcentrationsofHCl.TheheightofthesensorsignalinLSPRfromreciprocalvaluesofconcentrationandΔF.Fromtheinterceptofmeasurementwasdeterminedaftercalibrationwithrefractiveindexthecurve,aΔFmaxvaluewasobtainedandusedtocalculatethestandards.Thus,themeasurementsoftheLSPRshiftduringbindingconstant(K)fromtheslopeofthecurveusingthepreviousequationofdifferentproteinswerecomparableandquantitative.Additionally,(eq6).thesignalintensitywascalculatedwiththreetimesthesignal-to-noiseForbothexperimentaldesigns,thelimitsofdetection(LODs)forratioasathresholdvalue.BSA,hTRF,andrecTRFontheAgilentCaryEclipsefluorimeterwereThedetectionlimitoftheLSPRsensorwas1ng/mLanalyteindeterminedtobe0.01,0.03,and0.05μM,respectively,usingthe39dependencyoftheusedsensorparticleandtheanalytetype.Thelinearregressionmethod.proteinLODswerecalculatedwiththreetimesthesignal-to-noiseEnsembleLSPRMeasurements.ChipsforLSPRsensingwere40ratioasathresholdvalue.WiththeLSPRsensors,therealbindingmadeusingamodifiedprotocolpublishedpreviously.Priortouse,kineticsaredisplayed,withoutbulkeffect,sothevaluecanbeallborosilicateglasschipswererinsedthoroughlywithanalkalinedetermineddirectly.removerandfurtherwithacetone,Rotisol,ethanol,andwaterinanObtainedresultswereanalyzedusingthemodifiedLangmuirultrasonicbathfor10min.Subsequently,theactivationofchipswas41adsorptionmodeldescribedbyequationeq7:conductedbyoxygenplasmaetchingfor1hat380Wusinga200GPlasmaSystem(TePlaGmbH,Wettenberg,Germany).ImmediatelyΔλKa[]Pafteretching,silanizationofthesurfacewasconductedbyincubating=Δλmax1P+[]Ka(7)thechipsin1%APTESin1mMaceticacidfor10minfollowedbywashingwithUPWinanultrasonicbathfor5min.ThisstepiswhereΔλistheshiftintheLSPRpeak,ΔλmaxisthemaximumLSPRrequiredinordertofunctionalizethechipswithaminesurfacegroups,shift,KistheLangmuiradsorptionconstant(M−1),and[P]isthealeadingtoanincreaseintheaffinityofAuNPsforthesurface.proteinconcentration.PreparedchipscanbestoredafterdryingwithnitrogenflowunderanCalculationsofAuNPSurfaceCoverage.Toestimatetheargonatmosphere.PriortoAuNPdeposition,chipsneedtobenumberofproteinmoleculesthatcouldfitontothesurfaceofAuNPsreactivatedbywashingwithUPWinanultrasonicbathfor10min.insolution,twoparametersareneeded:thesurfaceareaofone1993https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
3Langmuirpubs.acs.org/LangmuirArticlenanoparticle(AAuNP)andthesurfaceareaoccupiedbyoneproteinTable1.SizeDistributionandSurfaceChargeofCitrate-molecule(AP).TocalculateAAuNP,theparticleswereassumedtobeCoatedAuNPs,BovineSerumAlbumin(BSA),HumanperfectspheresandtheformulaforthesurfaceofaspherewasusedTransferrin(hTRF),andNon-glycosylatedRecombinant(eq8):aTransferrin(recTRF)inUltrapureWater2AAuNP=4rAuNPπ(8)speciesd/nm(%meanvolume)ζ/mVhwhererAuNPistheradiusoftheAuNPobtainedasahalfoftheparticleAuNPs65.70±0.90(100)−41.60±1.60diameter(dTEM),whichwasmeasuredexperimentallybyTEM.BSA7.33±0.28(100)−30.25±2.08TocalculateAP,thethree-dimensionalsizeofeachproteinwashTRF10.21±2.00(100)−22.32±0.90projectedontoatwo-dimensionalsurfaceasacirclewiththediameterrecTRF7.11±0.37(100)−17.65±2.92correspondingtotheproteindHvalues,measuredexperimentallybyatheDLStechnique.RadiusrPwasthencalculatedasahalfofthedH,Sizedistributionwasobtainedbymeansofhydrodynamicdiameterandtheformulaforthesurfaceareaofacirclewasused(eq9):(dH,nm)fromthesize−volumeweighteddistributionusingthedynamiclightscatteringtechnique.Surfacechargewasdeterminedas2APP=πr(9)zeta(ζ)potentialvalues,inmV,bytheelectrophoreticlightscatteringmethod.Allexperimentsweredoneat25°Cin0.1mMNaCl(pHFinally,thetheoreticalmaximumnumberofproteinmoleculeson5.6)andatAuNPandproteinconcentrationsof15and1μM,thesurfaceofonenanoparticleinsolution(NS)wasobtainedbyrespectively.dividingAAuNPwithAP.InthecaseofAuNPsimmobilizedontheLSPRchip,theavailablesurfaceareaforadsorptionofproteinswasreducedasAuNPswereattachedtothechipononeside.Theamountofsurfacerenderedconductivity(UPW).InordertocalculatetheNSandNLSPRunavailablecanbeapproximatedbyprojectingthethree-dimensionalvalues,dHvaluesweremeasuredforproteins(Table1).ResultsAuNPstoatwo-dimensionalcirclewiththesameparticleradius.TheshowedtheaveragedHforBSAaround7nminaccordance44surfaceofthesaidcirclewassubtractedfromtheAuNPsurfacetowiththepreviouslypublishedresults,whilerecTRFandobtaintheparticlesurfaceavailableforproteinbinding(ANP‑available)hTRFhadhydrodynamicdiametersof7.11and10.21nm,usingeq10:respectively.TheELSmeasurementsrevealednegativeζ22potentialvaluesforallproteinsintherangebetween−17ANPavailable−=−=AAAuNPcovered4rrAuNPππ−AuNPand−30mV.TheSPRpeakofAuNPswasidentifiedata2=3rAuNPπ(10)wavelengthof528nm.ComparisonofSteady-StateFluorescenceQuench-ThetheoreticalmaximumnumberofproteinmoleculesonthesurfaceofoneAuNPimmobilizedontheLSPRchip(NLSPR)wasingandLSPR.AdsorptionkineticsandbindingaffinitiesobtainedbydividingANP−availablewithAP.betweenproteinsandNPsaremostlystudiedusingthefluorescencequenchingtechnique.Proteinsarecharacterized■RESULTSANDDISCUSSIONbyintrinsicfluorescenceoriginatingfromthreetypesofaminoPhysico-ChemicalCharacteristicsofAuNPs.Prepara-acidresidues:tryptophan(Trp),tyrosine(Tyr),andphenyl-tionofmonodispersedAuNPsthatweresphericalinshapealanine(Phe).Trpresidueshavethestrongestfluorescencewithaprimarysizeof60.0±7.4nmwasevidencedbyTEMquantumyield,beingthemostaccountableforintrinsicprotein17,21evaluation(Figure2),whileDLSmeasurementconfirmedfluorescence.Thesteady-stateemissionspectraofproteinsmonomodalsizedistribution,showinganaveragedHof65.7±selectedforthisstudyintheabsenceandpresenceofAuNPs0.9nm(Table1).areshowninFigure3.Steady-statefluorescencequenchingmeasurementswereusedforevaluatingproteinbindingaffinities(Kaff)bytheStern−Volmermethodandproteinbindingconstants(KAd)byLangmuiradsorptionisotherms.ToobtainKaffvalues,afixedconcentrationofproteinwasincubatedwithincreasingconcentrationsofAuNPs(Figure3),andthedecreaseintheintensityoffluorescencewasobservedforallproteinsupontheadditionofAuNPs,clearlyindicatingnano−biointeraction.Duringtheinteractions,aslightblueshiftintheemissionspectrawasnoticed.ItiswellknownthattheemissionfluorescenceisdependentonthepolarityoftheenvironmentaroundTrpresidues.TheblueshiftsofemissionpeaksoccurduetothetransferoftheTrpresiduesintoamorehydrophobicenvironment,whiletheredshiftsarecon-19,45sequencesofmoreexposuretothesolvent.SincetheFigure2.Transmissionelectronmicrograph(TEM)ofcitrate-coatedsurfaceoftheAuNPsisalesspolarenvironmentthantheAuNPs.Thescalebaris100nm.surroundingsolution,theobservedblueshiftconfirmedtheproteinbindingontotheAuNPsurfaceandwasinagreementAsexpected,thedHvalueswerehighercomparedtoprimarywithpreviouslypublishedresultsoninteractionsbetweenBSA4246diameterduetothehydrodynamiclayeraroundAuNPs.TheandAuNPsofdifferentdiameters.TheKSVvaluesforthesenegativevalueofζpotentialindicatedstrongelectrostaticinteractionswereobtainedfromtheslopeoftheStern−Volmerstabilizationbycitrateanions,whichenabledthelong-termplot(Figure4)usingeq1.43colloidalstabilityandgooddispersibilityofAuNPs.ThecalculatedKSVvaluesforBSA,hTRF,andrecTRFwereAllDLSandELSmeasurementswereperformedin0.1mM3.70×1010,4.67×1010,and4.33×1010M−1,respectively.NaClinordertoavoidpolarizationeffectsinsolventofpoorForthecalculationofk,aτvalueof5×10−9swasused,q01994https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
4Langmuirpubs.acs.org/LangmuirArticleFigure3.Fluorescenceemissionspectraof0.2μMaqueoussolutionof(a)bovineserumalbumin(BSA),(b)glycosylatedhumantransferrin(hTRF),and(c)non-glycosylatedrecombinanthumantransferrin(recTRF)intheabsenceandpresenceofAuNPsaddedinaconcentrationrangeof0.75−15.05pM.Theexcitationwavelengthwassetat280nm.Figure4.Stern−Volmerplotsofthefluorescencequenchingof0.2μM(a)bovineserumalbumin(BSA),(b)glycosylatedhumantransferrin(hTRF),and(c)non-glycosylatedrecombinanthumantransferrin(recTRF)byAuNPsaddedinaconcentrationrangeof0.75−15.05pM.Theexcitationwavelengthwassetat280nm.Errorbarsrepresentthestandarddeviationofthemeanofthreereplicatetitrations.Figure5.Logarithmicplotsofthefluorescencequenchingof0.2μM(a)bovineserumalbumin(BSA),(b)glycosylatedhumantransferrin(hTRF),and(c)non-glycosylatedrecombinanthumantransferrin(recTRF)byAuNPsaddedinaconcentrationrangeof0.75−15.05pM.Theexcitationwavelengthwassetat280nm.Errorbarsrepresentstandarddeviationofthemeanvaluesofthreereplicatetitrations.Table2.ResultsObtainedfortheInteractionsbetweenAuNPswithBovineSerumAlbumin(BSA),HumanTransferrin(hTRF),andRecombinantTransferrin(recTRF)ObtainedfromtheFluorescenceQuenchingMeasurements(AffinityConstants(K,M−1),HillCoefficients(n),andProteinBindingConstants(K))andtheLSPRExperiments(ProteinaffAdaBindingConstants(KAdLSPR))inPBSat25°CfluorescencequenchingdataLSPRdataproteinK(109M−1)nNK(105M−1)K(105M−1)NaffAdAdLSPRBSA432,000±121,0001.342105.52±1.675.77±0.95158hTRF3.57±0.850.871081.21±0.121.81±0.3681recTRF4.18±0.970.882241.27±0.131.34±0.24168aTheoreticalmaximalnumber(N)ofproteinmoleculesontheAuNPsurfacewascalculatedfromhydrodynamicdiametermeasurements.whichrepresentsthefluorescencelifeofTrpresidues.ThebetweenproteinsandAuNPswereformedintheground49calculatedkqvaluesforBSA,hTRF,andrecTRFwere7.40×statebeforeexcitationoccurred.1018,9.33×1018,and8.67×1018M−1s−1,respectively.AskSincealltestedsystemscorrespondedtoastaticfluorescenceqvaluesforallproteinsweremuchhigherthanthemaximumquenching,bindingaffinityconstants(Kaff)andHillvalueofthediffusion-controlledquenchingconstant(approx-coefficients(n)werecalculatedusingeq11imately2.0×1010M−1s−1),weassumedthatAuNPsinducedastaticandnotadynamicquenchingprocessfortestedlogijjFF0−yzz=+[logKnlogAuNP]jzproteins.47,48Therefore,thenon-fluorescentcomplexeskF{(11)1995https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
5Langmuirpubs.acs.org/LangmuirArticleFigure6.NormalizedLSPRshiftsfor(a)bovineserumalbumin(BSA),(b)glycosylatedhumantransferrin(hTRF),and(c)non-glycosylatedrecombinanthumantransferrin(recTRF),calculatedasΔλ/Δλmaxwithrespecttoproteinconcentration(nM)inPBS,whereΔλ/ΔλmaxreferstoachangeinLSPRpeakpositiondividedbythemaximumchangeuponadsorptionofproteins.ThedataweremodeledwiththeLangmuiradsorptionisotherm.Errorbarsrepresentstandarddeviationofthemeanofthreereplicatetitrations.andobtainedfromtheslopeandinterceptofthelogarithmicimmediatevicinityoftheAuNPs,anyadsorptionwillcauseaplotsoffluorescencequenching(Figure5).shiftinthepeakposition(Δλ).AdsorptionofproteinsusuallyTheHillcoefficient(n)referstothedegreeofcooperativityresultsinapositiveΔλ(redshift)duetothehigherrefractiveinproteinbindingtotheAgNPsurface.Whenn=1,theindexofproteinscomparedtowater(∼1.50versus1.33,bindingofproteinsisindependent,whilen<1orn>133,60respectively).TheincreaseinΔλfollowedtheincreaseindenotesdecreasedorincreased,respectively,ligandbindingintheamountofboundproteinuntilsaturation,afterwhichitthepresenceofotherligandsonthesurface.ForBSA,n>1reachedaplateau.TheadsorptionofBSA,hTRF,andrecTRFwascalculated(Table2),pointingtocooperativityofbindingontoAuNPswasmonitoredasLSPRpeakshifts(Figure6).andBSAmultilayersontheAuNPs,asalreadyevidencedbyFromthemeasuredrelativeLSPRshifts,anormalized50,51earlierstudies,althoughDominguez-Medinaetal.foundresponsecurvewasconstructedafterAuNPexposuretoanti-cooperativebindingofBSAonto51nmsizedcitrate-proteinsolutionsofdifferentconcentrationsbetween0.30andcoatedAuNPs.Hillcoefficientswerecalculatedasbeinglower37.6μM,whichwasusedtocalculateproteinadsorptionthan1forbindingofbothtransferrins,indicatingrepulsionconstants(KAdLSPR,giveninTable2)usingtheLangmuirforcesbetweenboundandfreeTRFmoleculesthatincreaseadsorptionmodelasdescribedabove.52withthesurfaceoccupancy.Therefore,monolayeradsorp-ProteinadsorptionontotheAuNPsurfaceresultedinthetionontoAuNPsmaybepredictedforhTRFandrecTRF.formationofadynamicbiomolecularlayerwhosecompositionWemeasuredamuchhigherKaffvalue(Table2)forBSAvariesovertimeduetotheassociationanddissociationof14−1(4.32×10M)thanvaluespublishedbysomeauthors61proteins.Thisphenomenonallowedthecalculationofthe(ranging109−1011M−1),whichmaybeexplainedbythe48,50,53constantforproteinadsorptionontothenanosurfacebythesmallersizeofAuNPsusedinthesestudies.Indeed,35,41,6254Langmuiradsorptionisotherms.TheLangmuiradsorp-Lacerdaetal.showedthatKaffvaluesfortheinteractionsoftionisothermisamodelofnonlinearadsorptionthatassumesdifferentbloodproteinsandAuNPsincreasedwiththeincreasemonolayerformation.Alternatively,theFreundlichadsorptionintheAuNPdiameter.ThecalculatedKaffvaluesinourstudyisothermcanbeusedtodescribemultilayerbinding,butthefollowedtheorderBSA>recTRF>hTRF,indicatingthatfittingofourresultstotheFreundlichmodelyieldednoglycosylationofproteinsmayhindertheirinteractionwiththecorrelation.FromthecalculatedKAdLSPRvalues,itcanbeseennanosurface.thatBSAadsorptiontotheAuNPswasstrongerthantheAnotherreasonforstrongerBSA−AuNPassociationadsorptionoftransferrins,whichisinaccordancewithresultscomparedtotransferrinsmaybethepresenceofafreecysteineresidueinBSA,whichmayinteractwiththeobtainedforKaffconstants(seeTable2).However,thesetwo55parameterscannotbedirectlycomparedsincetheLangmuirnanosurfaceduetothehighaffinityofsulfurformetals.ItconstantassumesthatthesurfaceofanadsorbentisisknownthattheinteractionbetweenproteinsandthesurfaceofNPsoccursmainlyduetoelectrostaticforcesandcovalenthomogeneous,whichmeansthateverysiteforadsorptionisbinding.56,57Theinitialbindingmaybestimulatedbyequivalentinthetermsofadsorptionenergy.Moreover,electrostaticforcesfollowedbyformingcovalentbondsmainlyadsorptionofeveryproteinmoleculeisindependentonthe63betweentheAusurfaceandsulfurofthecysteineresidueinmoleculesalreadypresentonthesurface.Alternatively,theproteins.56Ontheotherhand,hTRFandrecTRFdonotStern−VolmermodelusesaHillscoefficientforcalculatingthecontainfreethiolgroupssinceallcysteineresiduesareinvolvedcooperativityofbinding,andtherefore,bindingofproteinindisulfidebonds.58Nevertheless,thisisthefirststudyclearlymoleculesisdependentonthemoleculesalreadyattachedtoshowinganobviousdifferenceinassociationconstantsthesurface.betweenalbuminandtransferrin,whiledisagreementswithSincethesetwomodelsarenotbasedonthesamepreviousstudieslikelystemfromthedifferentNPtypesandprinciples,constantscannotbedirectlycompared.Therefore,59weperformedadditionalsteady-statefluorescenceevaluation,conditionsusedintheexperiments.FortheLSPRevaluationofAuNPs−proteininteractions,wherefixedconcentrationofAuNPswasincubatedwithincreasingconcentrationsofproteinsolutionswereaddedtoincreasingconcentrationofproteins,whichresultedindataAuNPsimmobilizedonthechipsurface.SincetheLSPRpeakusedtocalculateKAdfromthemodifiedlinearformofmaximumisdependentontherefractiveindexintheLangmuirequation(eq7).Asmentionedpreviously,linear1996https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
6Langmuirpubs.acs.org/LangmuirArticleFigure7.LinearplotsobtainedfrommodifiedLangmuirequationataconstantAuNPconcentrationof60μMwithincreasingconcentrationsof(a)bovineserumalbumin(BSA),(b)glycosylatedhumantransferrin(hTRF),and(c)non-glycosylatedrecombinanthumantransferrin(recTRF)inaconcentrationrangeof0.15−0.75μM.Theexcitationwavelengthwassetat280nm.Errorbarsrepresentstandarddeviationofthemeanvaluesofthreereplicatetitrations.plotsweremadefromreciprocalvaluesofproteinconcen-Table3.MainDifferencesandSimilaritiesbetweentrationandΔFvalues(Figure7).FluorescenceSpectroscopyandLocalizedSurfacePlasmonFromtheslopesofthecurves,KAdvalueshavebeenResonanceMethodscalculated(Table2).TheseresultswereingoodagreementfluorescencespectroscopylocalizedsurfaceplasmonresonancewithresultsobtainedfromLSPRmeasurementsastheyshowedthattheadsorptionofBSAtotheAuNPsurfacewas2mLminimum0.25mLhighercomparedtothatoftransferrins.bindingaffinitybetweenmoleculesbindingaffinityofadsorbentfortheadsorptionsitesAdditionally,thetheoreticalmaximumnumberofproteinfluorescencequenchingofproteintheLSPRpeakshiftofNPsbymolecules(N)forbothfreeandimmobilizedAuNPswasuponbindingtotheNPsurfaceadsorptionofproteincalculatedfromtheexperimentaldHvaluesofbothAuNPsandinterferencesduetotheinnerfilterdependsonthechangeintherefractiveproteins.Theestimatedsurfacesoccupiedbyaproteineffectindexofsolutionmoleculewerecalculatedtobe53.7,104.2,and50.6nm2forrequiresfluorescentligandslabel-freemethodBSA,hTRF,andrecTRF,respectively.Thisisingoodhighsamplevolumeandanalytelowsamplevolumeandlowconcentrationconcentrationofanalytesagreementwithliteraturereportsthatestimatedthesizeof264,65NPsdispersedinasolutionthatNPsimmobilizedonachipthatrestrictsTRFfromthecrystallographicstructuretoaround42nm.allowsproteinstoattachtoallthenumberofbindingsitesontheHowever,theseexperimentalstudiesyieldedthesurfaceareabindingsitesnanosurfaceoccupiedbyTRFtobesignificantlyhigherthancalculated,conformationalandrotationalconformationalandrotationalentropyentropyofproteinsnotaffectedofproteinsaffectedlikelybecausetheglycanstructurewasnottakeninto64consideration.Indeed,ourdatashowthatglycosylatedAdsorptionconstantsobtainedbytwocomplementaryhTRFoccupiestwiceasmuchspaceasthenon-glycosylatedapproachesyieldedsimilarresults,withslightlylowerstandardrecTRF.TheestimatedsurfaceareaofBSAisalsoin266deviationsfortheLSPRmethod.Apreviouslypublishedworkagreementwiththereportedvalueof60nm.The32ofBoehmleretal.ontheinteractionsbetweenBSAandcalculationsthusyieldthemaximumcoveragereportedinAgNPsusingtheLSPRmethodshowedthatadsorptionTable2.NforAuNPsimmobilizedonaLSPRchipissmallerconstantsincreasedwithNPdiameter.Contrarily,DennisonetthanNforthefreeAuNPssinceaquarterofthesurfaceis41al.obtainedahigheradsorptionconstantforBSAontotheconsideredinaccessibleforbindingduetotheattachmenttoAuNPsurfacecomparedtoourresults,eventhoughtheyusedthechip.TheN(BSA)isroughlythesameasN(recTRF)sincesmallerAuNPs.ThereasonbehindmaybefoundindifferenttheirdHvaluesweremeasuredtobeverysimilar,whilethesurfacecoatingsastheirAuNPswerestabilizedwithpoly-N(hTRF)issignificantlylower.TheliteraturereportsonTRF(allylaminehydrochloride),whichcanaffecttheresults.41andhumanserumalbuminbindingto5nmFePtNPsshowVangalaetal.69claimedthattheadsorptionconstantofBSAtosimilarrelationofN(TRF)andN(albumin)(22vs20citrate-coatedAuNPsshouldbebetween106to5×107M−165,67moleculesperNP).Also,astudycomparingthebindingbasedontheirLSPRmeasurements,buttheyalsousedsmallerofBSAandhTRFonpoly(lactic-co-glycolicacid)NPsyieldedAuNPscomparedtous.However,noneofthesestudiesN(BSA)tobealmostdoublethanN(hTRF),whichconfirmsreportedvaluesthatcanbedirectlycompared,aspresentedin68ourmodel.InrelationtotheobtainedHillcoefficientsourstudy(KAdandKAdLSPRinTable2).However,ourresults(Table2),itcanbeconsideredthatthemaximumsurfacecorrespondquitewelltothoseobtainedbyTsaietal.,70whocoveragewithBSAwouldbeestablishedmoreeasilysincetheemployedamulti-methodapproachtostudyBSAadsorptionBSAbindingiscooperative(n>1).Likewise,sincen<1foronAuNPs.bothtransferrins,theirbindingisun-cooperative,andmoreMeasuredvaluesforKAdandKAdLSPRwerequitesimilarforenergywouldbeneededtoachievesaturation(i.e.,toreachN).allthreeproteins(Table3),implyingnosignificantdifferenceAdvantagesoftheLSPRMethodforNano−BiobetweentheadsorptionofalltheseproteinstotheAuNPStudies.FluorescencespectroscopyandLSPRmethodsdiffersurface.Thiswasnotthecaseforthebindingaffinities(Tableinexperimentalapproachesandcalculationmethods.Thekey2).ThereasonmaybefoundinthefactthattheadsorptiondifferencesandsimilaritiesbetweenbothmethodsareexperimentsmeasuredbyLSPRprovideonlytheinformationsummarizedinTable3.ontheproteintransportfromthesolutiontotheAuNPsurface1997https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
7Langmuirpubs.acs.org/LangmuirArticleandnotontheactualattachmentkineticsthatwasobtained■ACKNOWLEDGMENTSfromthefluorescencequenchingstudy.Moreover,LSPRThisstudywasfinanciallysupportedbythe“Researchresultsmayexplainchangesinadsorption-inducedreorienta-Cooperability”ProgramoftheCroatianScienceFoundationtion,clustering,andaggregationoftheproteinonafundedbytheEuropeanUnionfromtheEuropeanSocialFundnanosurfaceasafunctionofproteinconcentrationinsolution,undertheOperationalProgrammeEfficientHumanResourceswhilethedynamicequilibriumadsorptionprocesswas2014−2020(grantHRZZ-PZS-2019-02-4323),bytheCro-obstructedduetotheimmobilizationofAuNPsontotheatianScienceFoundationgrantnumberHRZZ-IP-2016-06-chip.Ontheotherhand,theStern−Volmerapproachallows2436,andbythePPPProgrammesforProject-RelatedtheinvestigationofthekineticsofaphotophysicalPersonalExchangebetweenGermanAcademicExchangeintermoleculardeactivationprocess.ServiceandMinistryofScienceandEducationoftheRepublic■ofCroatia(ID57392451).CONCLUSIONSThisstudydemonstratedacomplementaryandcombined■REFERENCESapproachtoinvestigatethenano−biointerface.Fluorescence(1)Akter,M.;Sikder,M.T.;Rahman,M.M.;Ullah,A.K.M.A.;quenchingtitrationisanestablishedtechniquewithawell-Hossain,K.F.B.;Banik,S.;Hosokawa,T.;Saito,T.;Kurasaki,M.AdevelopedtheoreticalbackgroundthatemploystheStern−SystematicReviewonSilverNanoparticles-InducedCytotoxicity:PhysicochemicalPropertiesandPerspectives.J.Adv.Res.2018,9,1−Volmerequation.However,itrequireshighervolumesand16.concentrationsofthesamplesandcostlierequipmentandis(2)Sukhanova,A.;Bozrova,S.;Sokolov,P.;Berestovoy,M.;pronetoopticalinterferences,comparedtoLSPR.TheLSPR,Karaulov,A.;Nabiev,I.DependenceofNanoparticleToxicityonestablishedinthepastdecades,hasstillbeenlessknownandTheirPhysicalandChemicalProperties.NanoscaleRes.Lett.2018,13,appliedinbindingandkineticstudies.Here,theviabilityof44.LSPRforthecharacterizationofNPs−proteininteractionswas(3)Gatoo,M.A.;Naseem,S.;Arfat,M.Y.;MahmoodDar,A.;demonstrated.ThebindingconstantsofthreeplasmaproteinsQasim,K.;Zubair,S.PhysicochemicalPropertiesofNanomaterials:ImplicationinAssociatedToxicManifestations.BiomedRes.Int.2014,(albumin,glycosylated,andnon-glycosylatedtransferrins)to2014,1−8.thesurfaceofcitrate-coatedAuNPswerecalculated.Theorder(4)Moore,T.L.;Rodriguez-Lorenzo,L.;Hirsch,V.;Balog,S.;ofproteinadsorptionconstantsontotheAuNPsurfacewastheUrban,D.;Jud,C.;Rothen-Rutishauser,B.;Lattuada,M.;Petri-Fink,sameregardlessofthemethodused,whilebindingaffinitiesA.NanoparticleColloidalStabilityinCellCultureMediaandImpactobtainedbythefluorescencequenchingmethodshowedtheonCellularInteractions.Chem.Soc.Rev.2015,44,6287−6305.trendofBSA>recTRF≈hTRF.Thisstudy,therefore,clearly(5)Misra,S.K.;Dybowska,A.;Berhanu,D.;Luoma,S.N.;Valsami-demonstratedtheusefulnessoftheLSPRapproachinJones,E.TheComplexityofNanoparticleDissolutionandItsImportanceinNanotoxicologicalStudies.Sci.TotalEnviron.2012,nanotoxicologicalstudieswhileadvisingtheconsiderationof438,225−232.theirdifferences,limitations,andtransparencyinreporting(6)Docter,D.;Westmeier,D.;Markiewicz,M.;Stolte,S.;Knauer,S.experimentalconditions.K.;Stauber,R.H.TheNanoparticleBiomoleculeCorona:LessonsLearned-ChallengeAccepted?Chem.Soc.Rev.2015,44,6094−6121.■(7)Feliu,N.;Docter,D.;Heine,M.;delPino,P.;Ashraf,S.;AUTHORINFORMATIONKolosnjaj-Tabi,J.;Macchiarini,P.;Nielsen,P.;Alloyeau,D.;Gazeau,CorrespondingAuthorF.;Stauber,R.H.;Parak,W.J.InVivoDegenerationandtheFateofIvanaVinkovićVrceǩ−InstituteforMedicalResearchandInorganicNanoparticles.Chem.Soc.Rev.2016,45,2440−2457.OccupationalHealth,Zagreb10000,Croatia;orcid.org/(8)Cai,R.;Chen,C.TheCrownandtheScepter:Rolesofthe0000-0003-1382-5581;Email:ivinkovic@gmail.comProteinCoronainNanomedicine.Adv.Mater.2019,31,1805740.(9)delPino,P.;Pelaz,B.;Zhang,Q.;Maffre,P.;Nienhaus,G.U.;AuthorsParak,W.J.ProteinCoronaFormationaroundNanoparticles−fromthePasttotheFuture.Mater.Horiz.2014,1,301−313.RineaBarbir−InstituteforMedicalResearchand(10)Bargheer,D.;Nielsen,J.;Gebel,G.;Heine,M.;Salmen,S.C.;́OccupationalHealth,Zagreb10000,CroatiaStauber,R.;Weller,H.;Heeren,J.;Nielsen,P.TheFateofaDesignedBarbaraPem−InstituteforMedicalResearchandProteinCoronaonNanoparticlesinVitroandinVivo.BeilsteinJ.OccupationalHealth,Zagreb10000,CroatiaNanotechnol.2015,6,36−46.NikolinaKalceč−InstituteforMedicalResearchand(11)Li,L.;Mu,Q.;Zhang,B.;Yan,B.AnalyticalStrategiesforOccupationalHealth,Zagreb10000,CroatiaDetectingNanoparticle−ProteinInteractions.Analyst2010,135,StephanKastner−LeibnizInstituteofPhotonicTechnology,1519−1530.Jena07745,Germany(12)Lima,T.;Bernfur,K.;Vilanova,M.;Cedervall,T.Under-KatiaPodlesnaia−LeibnizInstituteofPhotonicTechnology,standingtheLipidandProteinCoronaFormationonDifferentSizedPolymericNanoparticles.Sci.Rep.2020,10,1129.Jena07745,Germany(13)Vilanova,O.;Mittag,J.J.;Kelly,P.M.;Milani,S.;Dawson,K.AndreaCsáki−LeibnizInstituteofPhotonicTechnology,JenaA.;Radler,J.O.;Franzese,G.UnderstandingtheKineticsofProtein-̈07745,GermanyNanoparticleCoronaFormation.ACSNano2016,10,10842−10850.WolfgangFritzsche−LeibnizInstituteofPhotonic(14)Lousinian,S.;Logothetidis,S.OpticalPropertiesofProteinsTechnology,Jena07745,GermanyandProteinAdsorptionStudy.Microelectron.Eng.2007,84,479−485.Completecontactinformationisavailableat:(15)Zhang,J.Z.OpticalPropertiesandSpectroscopyofNanomateri-als.WorldScientific:NewJersey,USA2009,383.https://pubs.acs.org/10.1021/acs.langmuir.0c03569(16)Chen,T.;Wong,Y.S.;Zheng,W.;Bai,Y.;Huang,L.SeleniumNanoparticlesFabricatedinUndariaPinnatifidaPolysaccharideNotesSolutionsInduceMitochondria-MediatedApoptosisinA375Theauthorsdeclarenocompetingfinancialinterest.HumanMelanomaCells.ColloidsSurf.,B2008,67,26−31.1998https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
8Langmuirpubs.acs.org/LangmuirArticle(17)Li,X.;Wang,K.;Peng,Y.ExploringtheInteractionofSilver(37)Frens,G.ControlledNucleationfortheRegulationoftheNanoparticleswithPepsinandItsAdsorptionIsothermsandKinetics.ParticleSizeinMonodisperseGoldSuspensions.Nat.Phys.Sci.1973,Chem.-Biol.Interact.2018,286,52−59.241,20−22.(18)Roy,S.;Das,T.K.StudyofInteractionBetweenTryptophan,(38)Hao,C.;Xu,G.;Feng,Y.;Lu,L.;Sun,W.;Sun,R.FluorescenceTyrosine,andPhenylalanineSeparatelywithSilverNanoparticlesbyQuenchingStudyontheInteractionofFerroferricOxideNano-FluorescenceQuenchingMethod.J.Appl.Spectrosc.2015,82,598−particleswithBovineSerumAlbumin.Spectrochim.Acta,PartA2017,606.184,191−197.(19)Naveenraj,S.;Anandan,S.BindingofSerumAlbuminswith(39)Shrivastava,A.;Gupta,V.B.MethodsfortheDeterminationofBioactiveSubstances−NanoparticlestoDrugs.J.Photochem.LimitofDetectionandLimitofQuantitationoftheAnalyticalPhotobiol.CPhotochem.Rev.2013,14,53−71.Methods.ChroniclesYoungSci.2011,2,21−25.(20)Zeinabad,H.A.;Kachooei,E.;Saboury,A.A.;Kostova,I.;(40)Thamm,S.;Csaki,A.;Fritzsche,W.LSPRDetectionofNucleićAttar,F.;Vaezzadeh,M.;Falahati,M.ThermodynamicandAcidsonNanoparticleMonolayers.MethodsMol.Biol.2018,1811,ConformationalChangesofProteintowardInteractionwithNano-163−171.particles:ASpectroscopicOverview.RSCAdv.2016,6,105903−(41)Dennison,J.M.;Zupancic,J.M.;Lin,W.;Dwyer,J.H.;105919.Murphy,C.J.ProteinAdsorptiontoChargedGoldNanospheresasa(21)Iosin,M.;Toderas,F.;Baldeck,P.L.;Astilean,S.StudyofFunctionofProteinDeformability.Langmuir2017,33,7751−7761.Protein−GoldNanoparticleConjugatesbyFluorescenceandSurface-(42)Stetefeld,J.;McKenna,S.A.;Patel,T.R.DynamicLightEnhancedRamanScattering.J.Mol.Struct.2009,924-926,196−200.Scattering:APracticalGuideandApplicationsinBiomedical(22)Sousa,A.A.ANoteontheUseofSteady−StateFluorescenceSciences.Biophys.Rev.2016,8,409−427.QuenchingtoQuantifyNanoparticle−ProteinInteractions.J.Fluoresc.(43)Jacobs,C.;Müller,R.H.ProductionandCharacterizationofa2015,25,1567−1575.BudesonideNanosuspensionforPulmonaryAdministration.Pharm.(23)Willets,K.A.;VanDuyne,R.P.LocalizedSurfacePlasmonRes.2002,19,189−194.ResonanceSpectroscopyandSensing.Annu.Rev.Phys.Chem.2007,(44)Yohannes,G.;Wiedmer,S.K.;Elomaa,M.;Jussila,M.;Aseyev,58,267−297.V.;Riekkola,M.-L.ThermalAggregationofBovineSerumAlbumin(24)Jain,P.K.;Huang,X.;El-Sayed,I.H.;El-Sayed,M.A.NobleStudiedbyAsymmetricalFlowField-FlowFractionation.Anal.Chim.MetalsontheNanoscale:OpticalandPhotothermalPropertiesandActa2010,675,191−198.SomeApplicationsinImaging,Sensing,Biology,andMedicine.Acc.(45)Klajnert,B.;Stanisławska,L.;Bryszewska,M.;Pałecz,B.Chem.Res.2008,41,1578−1586.InteractionsbetweenPAMAMDendrimersandBovineSerum(25)Hutter,E.;Fendler,J.H.ExploitationofLocalizedSurfaceAlbumin.Biochim.Biophys.Acta-ProteinsProteomics2003,1648,PlasmonResonance.Adv.Mater.2004,16,1685−1706.115−126.(26)Sagle,L.B.;Ruvuna,L.K.;Ruemmele,J.A.;VanDuyne,R.P.(46)Goy-Lopez,S.;Juárez,J.;Alatorre-Meda,M.;Casals,E.;Puntes,́AdvancesinLocalizedSurfacePlasmonResonanceSpectroscopyV.F.;Taboada,P.;Mosquera,V.PhysicochemicalCharacteristicsofBiosensing.Nanomedicine2011,6,1447−1462.Protein-NPBioconjugates:TheRoleofParticleCurvatureand(27)Vangala,K.;Siriwardana,K.;Vasquez,E.S.;Xin,Y.;Pittman,SolutionConditionsonHumanSerumAlbuminConformationandC.U.,Jr.;Walters,K.B.;Zhang,D.SimultaneousandSequentialFibrillogenesisInhibition.Langmuir2012,28,9113−9126.ProteinandOrganothiolInteractionswithGoldNanoparticles.J.(47)Naveenraj,S.;Anandan,S.;Kathiravan,A.;Renganathan,R.;Phys.Chem.C2013,117,1366−1374.Ashokkumar,M.TheInteractionofSonochemicallySynthesizedGold(28)Kaur,K.;Forrest,J.A.InfluenceofParticleSizeontheBindingNanoparticleswithSerumAlbumins.J.Pharm.Biomed.Anal.2010,ActivityofProteinsAdsorbedontoGoldNanoparticles.Langmuir53,804−810.2012,28,2736−2744.(48)Vaishanav,S.K.;Chandraker,K.;Korram,J.;Nagwanshi,R.;(29)Huang,X.;El-Sayed,M.A.GoldNanoparticles:OpticalGhosh,K.K.;Satnami,M.L.ProteinNanoparticleInteraction:APropertiesandImplementationsinCancerDiagnosisandPhoto-SpectrophotometricApproachforAdsorptionKineticsandBindingthermalTherapy.J.Adv.Res.2010,1,13−28.Studies.J.Mol.Struct.2016,1117,300−310.(30)Ren,X.;Li,M.;Chen,M.;Dai,Y.;Shi,T.;Zhao,Y.-L.(49)Lakowicz,J.R.PrinciplesofFluorescenceSpectroscopy;Springer:CharacterizationofProtein-ConjugatingKineticsBasedonLocalizedNewYork,USA,2006,954.SurfacePlasmonResonanceoftheGoldNanoparticle.Spectrosc.Lett.(50)Boulos,S.P.;Davis,T.A.;Yang,J.A.;Lohse,S.E.;Alkilany,A.2016,49,434−443.M.;Holland,L.A.;Murphy,C.J.Nanoparticle-ProteinInteractions:(31)Teichroeb,J.H.;Forrest,J.A.;Jones,L.W.Size-DependentAThermodynamicandKineticStudyoftheAdsorptionofBovineDenaturingKineticsofBovineSerumAlbuminAdsorbedontoGoldSerumAlbumintoGoldNanoparticleSurfaces.Langmuir2013,29,Nanospheres.Eur.Phys.J.E:SoftMatterBiol.Phys.2008,26,411−14984−14996.415.(51)Waghmare,M.;Khade,B.;Chaudhari,P.;Dongre,P.Multiple(32)Boehmler,D.J.;O’Dell,Z.J.;Chung,C.;Riley,K.R.BovineLayerFormationofBovineSerumAlbuminonSilverNanoparticlesSerumAlbuminEnhancesSilverNanoparticleDissolutionKineticsinRevealedbyDynamicLightScatteringandSpectroscopicTechniques.aSize-andConcentration-DependentManner.Langmuir2020,36,J.Nanopart.Res.2018,20,185.1053−1061.(52)Dominguez-Medina,S.;McDonough,S.;Swanglap,P.;Landes,(33)Jackman,J.A.;Ferhan,A.R.;Yoon,B.K.;Park,J.H.;Zhdanov,C.F.;Link,S.InSituMeasurementofBovineSerumAlbuminV.P.;Cho,N.-J.IndirectNanoplasmonicSensingPlatformforInteractionwithGoldNanospheres.Langmuir2012,28,9131−9139.MonitoringTemperature-DependentProteinAdsorption.Anal.Chem.(53)Wangoo,N.;Suri,C.R.;Shekhawat,G.InteractionofGold2017,89,12976−12983.NanoparticleswithProtein:ASpectroscopicStudytoMonitor(34)Beeram,S.R.;Zamborini,F.P.EffectofProteinBindingProteinConformationalChanges.Appl.Phys.Lett.2008,92,133104.Coverage,Location,andDistanceontheLocalizedSurfacePlasmon(54)Lacerda,S.H.D.P.;Park,J.J.;Meuse,C.;Pristinski,D.;ResonanceResponseofPurifiedAuNanoplatesGrownDirectlyonBecker,M.L.;Karim,A.;Douglas,J.F.InteractionofGoldSurfaces.J.Phys.Chem.C2011,115,7364−7371.NanoparticleswithCommonHumanBloodProteins.ACSNano(35)Zhao,J.;Zhang,X.;Yonzon,C.R.;Haes,A.J.;VanDuyne,R.2010,4,365−379.P.LocalizedSurfacePlasmonResonanceBiosensors.Nanomedicine(55)Carter,D.C.;Ho,J.X.StructureofSerumAlbumin;Academic2006,1,219−228.Press,lnc:Cambridge,USA,1994;pp.153−203.(36)Turkevich,J.;Stevenson,P.C.;Hillier,J.AStudyofthe(56)Wang,G.;Liu,X.;Yan,C.;Bai,G.;Lu,Y.ProbingtheBindingNucleationandGrowthProcessesintheSynthesisofColloidalGold.ofTrypsintoGlutathione-StabilizedGoldNanoparticlesinAqueousDiscuss.FaradaySoc.1951,11,55−75.Solution.ColloidsandSurfacesB:Biointerfaces2015,135,261−266.1999https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
9Langmuirpubs.acs.org/LangmuirArticle(57)Chakraborti,S.;Joshi,P.;Chakravarty,D.;Shanker,V.;Ansari,Z.A.;Singh,S.P.;Chakrabarti,P.InteractionofPolyethyleneimine-FunctionalizedZnONanoparticleswithBovineSerumAlbumin.Langmuir2012,28,11142−11152.(58)Bailey,S.;Evans,R.W.;Garratt,R.C.;Gorinsky,B.;Hasnain,S.;Horsburgh,C.;Jhoti,H.;Lindley,P.F.;Mydin,A.MolecularStructureofSerumTransferrinat3.3-.ANG.Resolution.Biochemistry1988,27,5804−5812.(59)Yin,M.-M.;Dong,P.;Chen,W.-Q.;Xu,S.-P.;Yang,L.-Y.;Jiang,F.-L.;Liu,Y.ThermodynamicsandMechanismsoftheInteractionsbetweenUltrasmallFluorescentGoldNanoclustersandHumanSerumAlbumin,γ-Globulins,andTransferrin:ASpectro-scopicApproach.Langmuir2017,33,5108−5116.(60)Bingham,J.M.;Hall,W.P.;VanDuyne,R.P.ExploringtheUniqueCharacteristicsofLSPRBiosensing.InNanoplasmonicSensors;Dmitriev,A.,Ed.;SpringerNewYork:NewYork,USA,2012;pp.29−58.(61)Dell’Orco,D.;Lundqvist,M.;Oslakovic,C.;Cedervall,T.;Linse,S.ModelingtheTimeEvolutionoftheNanoparticle-ProteinCoronainaBodyFluid.PLoSOne2010,5,1−8.(62)Shao,Q.;Hall,C.K.ProteinAdsorptiononNanoparticles:ModelDevelopmentUsingComputerSimulation.J.Phys.Condens.Matter2016,28,414019.(63)Kecili,R.;Hussain,C.M.Chapter4-MechanismofAdsorptiononNanomaterials.InNanomaterialsinChromatography;Hussain,C.M.,Ed.;Elsevier:NewYork,USA,2018;pp.89−115.(64)Milani,S.;BaldelliBombelli,F.;Pitek,A.S.;Dawson,K.A.;Radler,J.ReversiblëversusIrreversibleBindingofTransferrintoPolystyreneNanoparticles:SoftandHardCorona.ACSNano2012,6,2532−2541.(65)Jiang,X.;Weise,S.;Hafner,M.;Röcker,C.;Zhang,F.;Parak,W.J.;Nienhaus,G.U.QuantitativeAnalysisoftheProteinCoronaonFePtNanoparticlesFormedbyTransferrinBinding.J.R.Soc.,Interface2010,7,5−13.(66)RezaNejadnik,M.;Jiskoot,W.MeasurementoftheAverageMassofProteinsAdsorbedtoaNanoparticlebyUsingaSuspendedMicrochannelResonator.J.Pharm.Sci.2015,104,698−704.(67)Röcker,C.;Pötzl,M.;Zhang,F.;Parak,W.J.;Nienhaus,G.U.AQuantitativeFluorescenceStudyofProteinMonolayerFormationonColloidalNanoparticles.Nat.Nanotechnol.2009,4,577−580.(68)Chang,J.;Jallouli,Y.;Kroubi,M.;Yuan,X.;Feng,W.;Kang,C.;Pu,P.;Betbeder,D.CharacterizationofEndocytosisofTransferrin-CoatedPLGANanoparticlesbytheBlood−BrainBarrier.Int.J.Pharm.2009,379,285−292.(69)Vangala,K.;Ameer,F.;Salomon,G.;Le,V.;Lewis,E.;Yu,L.;Liu,D.;Zhang,D.StudyingProteinandGoldNanoparticleInteractionUsingOrganothiolsasMolecularProbes.J.Phys.Chem.C2012,116,3645−3652.(70)Tsai,D.-H.;DelRio,F.W.;Keene,A.M.;Tyner,K.M.;MacCuspie,R.I.;Cho,T.J.;Zachariah,M.R.;Hackley,V.A.AdsorptionandConformationofSerumAlbuminProteinonGoldNanoparticlesInvestigatedUsingDimensionalMeasurementsandinSituSpectroscopicMethods.Langmuir2011,27,2464−2477.2000https://dx.doi.org/10.1021/acs.langmuir.0c03569Langmuir2021,37,1991−2000
此文档下载收益归作者所有