《Electrostatic Tethering of the Intrinsically Disordered Domain with - Singh et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterUltrasensitiveCharacterizationofthePrionProteinbySurface-EnhancedRamanScattering:SelectiveEnhancementviaElectrostaticTetheringoftheIntrinsicallyDisorderedDomainwithFunctionalizedSilverNanoparticles∥∥SwapnilSingh,AishwaryaAgarwal,AnamikaAvni,andSamratMukhopadhyay*CiteThis:J.Phys.Chem.Lett.2021,12,3187−3194ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Surface-enhancedRamanscattering(SERS)circumventstheinherentinsensitivityofRamanspectroscopyandoffersapowerfultoolfortheultrasensitivedetectionandcharacterizationofbiomoleculesatlowconcentrations.HereweshowthatSERSviaelectrostatictetheringbetweensurface-modifiednegativelychargedsilvernanoparticlesandhighlypositivelychargedintrinsicallydisorderedN-terminaldomainoftheprionproteinallowshighlysensitiveandreproducibleproteindetectionandcharacterizationataslowashundredsofnanomolarproteinconcentrations.Thesemeasurementspreferentiallyilluminateaselectivepartoftheproteinduetoasharpdependenceofthenear-fieldintensityonthedistancebetweenthenanoparticlesurfaceandtheprotein.Wealsodemonstratethatbyshorteningthelengthofthedisorderedtailitispossibletoachieveadomain-selectiveRamanenhancementtostudytheC-terminalglobulardomain.Ourtether-length-dependentSERSmethodologywillserveasapotent,noninvasive,andlabel-freestrategytodetectandcharacterizeawiderangeofproteinspossessingdisorderedsegments.onformationalconversionoftheprionprotein(PrP)VibrationalRamanspectroscopyisapowerfultooltoCfromanα-helix-richcellularform(PrPc)toamisfolded,characterizethevibrationalmodesthatcanprovideawealthofaggregation-prone,β-richscrapieform(PrPSc)isassociatedconformationalinformationonproteinandotherbiomole-14−18withaclassofdeadlytransmissibleneurodegenerativecules.However,theinherentinsensitivityofRaman1,2scatteringposesasignificantchallengeincharacterizingthediseases.Creutzfeldt-Jakobdisease,kuru,fatalfamilial19insomnia,andGerstmann−Straussler̈−Scheinker(GSS)syn-structuralstatesofproteinatlowconcentrations.Todromearehumanpriondiseases,whereasscrapieandbovinecircumventthisissue,surface-enhancedRamanscatteringDownloadedviaUNIVOFNEWMEXICOonMay16,2021at08:41:32(UTC).spongiformencephalopathyor“madcowdisease”arefoundin(SERS)hasemergedasapromisingtoolforitsremarkableanimals.1−4RecentstudieshaveprovidedkeystructuralchemicalandelectromagneticenhancementofRamansignalsinsightsintothesetransmissibleprionaggregates.5−8Inbycreatinghotspotsinthevicinityofmetalnanoparticles20−26Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.additiontohigh-resolutionstructuralstudiesofinfectious(NPs)enablingevensingle-moleculemeasurements.Theprions,itisimportanttodetectPrPinbiologicalfluids.directlabel-freeSERStechniqueisasimple,sensitive,cost-AlthoughPrPisprimarilyconfinedtothebrainandthecentralefficient,robust,andnonperturbativeapproachtodetectandnervoussystem,aminusculequantityofPrPisshowntobecharacterizeproteinsinanaqueousmedium.However,sincepresentinmanytissuesandbiologicalfluidsevenattheearlythemetallicsubstratesarerequiredforSERSmeasurements,presymptomaticstageofthedisease.9,10Therefore,thereisaeffortshavebeendirectedtoprepareSERSsubstrateswithpotentialriskofpriontransmissionviabloodtransfusion.11increasingenhancementandreproducibility.PreviousSERSstudieshavedetectedthePrPsignalwithconcentrationaslowHowever,detectionorconfirmationofitspresenceintheas100pM,butinsuchcases,theexperimentswereperformedbloodisdifficultevenbyadvancedmethodssuchaseitherusingalabel-basedapproachorwerecarriedinadriedfluorescenceimmunoassay,radioimmunoassay,enzyme-linkedimmunosorbentassay,andproteinmisfoldingcyclicamplifi-cation,anditstillreliesonpost-mortemimageanalysisofReceived:January23,2021degeneratetissues.12,13Moreover,todate,thereisnospecificAccepted:March16,2021biochemicalassayforearly,sensitive,andnoninvasivePublished:March24,2021diagnosisofthedisease.Therefore,thereisapressingneedtoutilizesensitivetechniquesfortheultrasensitive-detectionofPrPinvariousbiologicalfluids.©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpclett.1c002403187J.Phys.Chem.Lett.2021,12,3187−3194
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.(A)Schematicrepresentationofthehumanprionprotein(PrP)indicatingvariousdomainsandsegments.(B)Aminoacidsequenceofthefull-lengthprion,PrP(23−231).Thepositivelyandnegativelychargedaminoacidsarehighlightedinblueandred,respectively.(C)NMRstructureofhumanPrP(90−231)(PDBID:2LSB)generatedusingPyMOL(Schrödinger,LLC,NewYork).Figure2.(A)SEMimageofsilvernanoparticles(AgNPs).(B)HistogramforNPssize-distributionderivedfromtheSEManalysis.(C)UV−visspectrumforiodide-modifiedsilvernanoparticles(AgIMNPs)(olive)andAgIMNPsinthepresenceofPrP(23−231)(blue).(D)AFMimagesofAgIMNPsandAgIMNPs+PrPindicatingnanoparticleaggregation.Thecorrespondingheightprofilesarealsoshown.27−30stateoftheprotein.Additionally,thereareafewreportssolution-basedSERSdetectionofPrPremainelusive.Inthis31onthedetectionofPrPindifferentcelllines;however,thework,wehaveutilizedSERStodetectandcharacterizethemoleculardesignandthemechanisticunderstandingforthehumanPrPinsolutionmaintainingitsnativestructureunder3188https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterphysiologicallyrelevantconditions.Whileachievingaproteinmonolayercoatingandsuggestedtheabsenceofany39,42RamansignalenhancementbymodifyingtheshapeandsizeofaggregatedNPspostfunctionalization(FigureS3A).23,32,33NPsconstitutesamajorongoingeffort,theinfluenceofWhilerecordingSERSspectra,weonlyobservedintensedifferentstructuralelementsofproteinsintheadsorptiononpeakscorrespondingtometalhalidesat116,163,and241thenanoparticlesurfaceandtheproteinSERSspectraremaincm−1forsilveriodide(AgI),silverbromide(AgBr),andsilver42poorlyunderstood.chloride(AgCl),respectively.TheabsenceofpeaksHumanPrPisaC-terminallyglycophosphatidylinositol-correspondingtocitrateindicatedasuccessfulsurface-anchoredcell-surfaceproteinthatispredominantlyα-helicalmodificationofNPs(FigureS3B).Next,wecentrifugedtheandiscomposedoftwodistinctregions(Figure1).Initshalide-modifiedNPstoremoveanyresidualimpuritiesornativeform,afterthecleavageofthesignalpeptide,theN-citratepresentinthecolloidalsolutiontominimizeanyterminaldomain(23−127)isintrinsicallydisorderedandinterferencewiththeproteinRamansignals.Aftercentrifuga-carriesanetpositivecharge.Onthecontrary,theC-terminaltion,theUV−visabsorbancebandofanyofthefunctionalizeddomainiswell-structuredwiththreeα-helices(144−154,NPsdidnotshowanychange;however,theSERSspectrafor173−194,and200−228),ashortantiparallelβ-sheet,andabromide-andchloride-coatedNPsstartedshowingtracesofsingledisulfidelinkagebetweentwocysteinesat179and214citratepeaks,whichweremaskedearlier,indicatingthe34,35(Figure1).AcloserlookattheaminoacidsequenceofunstablehalidecoatingontheNPs.ThispointstowardthePrPrevealedalargenumberofpositivelychargedaminoacidstronginteractionbetweensilverandiodidewhichareasoftresiduesintheN-terminaltailwithachargeof∼+14atneutralLewisacid−basepair,asaresultofwhichiodide-modifiedAgpH.We,therefore,hypothesizedthatthepositivelychargedNPsarebettercoatedascomparedtobromideandchloride.intrinsicallydisorderedN-terminaldomainofPrPcanactasanTherefore,wechoseiodide-modifiedAgNPs(AgIMNPs)anchortonegativelychargedsurface-modifiedmetalnano-forourfurtherstudies.WethenrecordedtheZeta(ζ)particlesenablingapotentdetectionandcharacterizationofpotentialforAgIMNPswhichwasfoundtobe−33mVtheproteinusingSERSspectroscopy.Wefurtherpostulated(FigureS4).Also,theSEMimagingofhalide-modifiedNPsthat,duetoasharpdistancedependenceinthefielddidnotshowanymorphologicaldifferenceascomparedtothatenhancementbymetalnanoparticles,wewouldbeabletoofthenonmodifiedAgNPs(FigureS5).AgIMNPswerethenselectivelymonitordifferentsegmentsoftheproteinbyusingamixedwithdifferentconcentrationsofPrP(23−231)atroomvariedlengthofthedisorderedN-terminaltailtetheredtothetemperature,followingwhichthecolorofthecolloidalsolutionnanoparticles.Thisisbecausetheintensityofthenear-fieldchangedimmediatelyfromolivegreentoarmygreen,intensitydecayssharplyasafunctionofthe12thpoweroftheindicatingtheaggregationofNPs.Also,werecordeddistancebetweenthesurfaceofthenanoparticleandtheabsorptionspectraforthiscolloidalsolution,whichshowed36vibrationalprobe.anadditionalbroadbandat700−800nmreflectingcollectiveInordertotesttheaforesaidhypothesis,theveryfirstsurfaceplasmonoscillationcausedbytheaggregationofNPsconsiderationwastochooseasensitiveSERSsubstrate.WemediatedbyPrP(Figure2C).Ingeneral,mostofthepracticalchosequasi-sphericalsilvernanoparticles(AgNPs)asaSERSmeasurementsrequiretheadditionofcertainagentsto37plasmonicsubstrateduetotheirhighestSERSactivity.AsainduceaggregationofNPs.Interestingly,weobservedthattheprelude,AgNPsweresynthesizedbychemicalreductionusingproteinitselfwasabletoinducetheaggregationoftheNPs,38,39citrate.Citrateactsasbothareducingagentandaresultingintheformationofalargenumberofhotspotswithin40stabilizingagentarrestingthecolloidgrowth.TheUV−viswhichproteinmoleculesgettrapped.Therefore,wewereableabsorptionspectrawererecordedtoevaluatetheshapeandtoperformSERSmeasurementsonourproteinofinterestsizeofAgNPs.Weobservedasingleabsorptionbandlocatedwithoutanyexternalagentstoinducenanoparticleaggregationat∼412nm,suggestingsmallsilvernanospheres(∼40−50ashasbeenalsoobservedpreviouslyforotherpositively4139,43nm)(FigureS1).Wefurtherverifiedthesizeandshapeofchargedproteins.AstrongelectrostaticinteractionoftheAgNPsusingscanningelectronmicroscopy(SEM)(FigurepositivelychargedN-terminaltailoftheproteinwithnegatively2A,B).Theaveragesizeofquasi-sphericalAgNPsobservedchargedNPsdrivesproteinadsorption,resultinginthewas∼49±12nm,whichisinagreementwiththesizeaggregationofNP.Toconfirmprotein-mediatednanoparticleobtainedfromabsorptionstudies.Furthermore,toassesstheaggregation,wecarriedoutatomicforcemicroscopy(AFM)stabilityofNPs,werecordedtheζpotentialofAgNPs,whichimagingtovisualizetheNPsinthepresenceandabsenceofwasfoundtobe−40±1mV,corroboratingthepreviousprotein.TheAFMimagesclearlyshowedaggregatesofthe39,42results(FigureS2).NPsinthepresenceofPrP(Figure2D).SincethedirectinteractionoftheproteinwiththemetalOurmaingoalwastodetectandcharacterizePrPinitssubstratesmightalterthenativestructureoftheprotein,wenativeformusinglabel-freeSERS.InordertomaintainthenextfunctionalizedthesurfaceofAgNPswithhalidesthatcannativestructuralintegrityoftheprotein,weperformedsolutionhaveseveraladvantages.ThehalidemonolayermaskstheSERSmeasurementstominimizehigh-energylaser-inducedoverwhelmingcitratepeaksandotherinterferencesbydamagebydissipatingtheexcessivelocalizedheatgenerated39displacingthecitrateandotherimpuritiespresentonthenearhotspotstotheentiresolution.Additionally,toavoidsurfaceofbareNPs.Moreimportantly,itpreventsdirectanyintrinsicfluorescencefromaromaticaminoacids,a785nm44contactbetweenproteinmoleculesandNPstherebyretaininglaserwaschosenasanexcitationsource.Beforecarryingout39,42thenativestructureoftheprotein.WefunctionalizedAgtheSERSmeasurements,wefirstrecordedthebulkRamanNPswiththreedifferenthalides,suchaspotassiumiodidespectrumofPrPbyusingdropdepositionRamanspectrosco-(KI),potassiumbromide(KBr),andpotassiumchloridepy.TheRamanshiftassignmentsrevealedthestructural(KCl).39,42elementsinPrP(amideI,1620−1700cm−1,andamideIII,TheUV−visabsorptionbandafterhalidemodification1220−1300cm−1)andseveralcharacteristicside-chain19,45−47exhibitedasmallred-shiftthatisexpectedduetohalidevibrations(Figure3A).TheamideIregionrepresents3189https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.(A)BulkRamanspectrumofPrP(23−231)indicatingmajorvibrationalfeatures(seeTableS2forinterpretationsofthepeaks).(B)DeconvolutionoftheamideIregion(1630−1720cm−1)bandforPrP(23−231).Theareaunderthecurvesrepresentsthepercentagecontributionofthesecondarystructuralelements:α-helix:magenta,randomcoil:cyan.(SeeTableS1forpercentagecontributionsestimatedfromdeconvolution.)Theblacklineistherawdataandtheredlineisthecumulativefit.Figure4.SolutionSERSspectraandbulkRamanspectra(black)ofPrP(23−231)(A),PrP(Y145Stop)(B),andPrP(90−231)(C).ThesolutionSERSspectrafordifferentproteinconcentrationsareshowninred(25μM),blue(5μM),magenta(500nM),andolive(250nM).SeeSupportingInformationfordetailsofdataacquisition,processing,andanalysis.primarilythecarbonyl(−CO)stretchwithsomecontribu-AftercarryingoutbulkRamanmeasurementsandassign-tionsfrom−C−Nstretchand−C−C−Ndeformationandisments,wenextsetouttoperformSERSstudiesonPrP(Figuresensitivetotheproteinsecondarystructures.Thedeconvolu-4A).Wewereabletoobtainhigh-qualitySERSspectraatlowtionoftheamideIregionofthespectrumallowedustomicromolardowntohundredsofnanomolarPrPconcen-estimatethecontentofdifferentsecondarystructures(∼27%trations.ThesespectracorroboratedthebulkRamanspectrain48α-helixand∼73%extended/coils;Figure3BandTableS1).termsofthepeakpositionandtherelativeintensityandwereThesecondarystructuralcontentsestimatedfromRamanfurtherestablishedbyplottingcorrelationspectra(FigureS7).spectroscopyalsocorroboratedtheresultsobtainedfromfar-TheelectrostatictetheringbetweenN-terminalIDRwiththeUVcirculardichroism(CD)spectroscopy(FigureS6).WenegativelychargedNPsenabledustodetectPrPatlowwereabletoassignseveralprominentside-chainmarkerssuchconcentrationsandthedetectionlimitwasapproximately250astryptophan(Trp),phenylalanine(Phe),andtyrosine(Tyr).nM.ManySERSsignalsat<250nMwerepresumablyduetoInbulkRamanmeasurements,wewereunabletoobserveafewerhotspotsatlowerproteinconcentrations.Theanalyticalwell-knowndisulfide(−S−S−)vibrationalsignaturethatenhancementfactorwasestimatedusingapreviouslydescribednormallyappearsintherangeof∼500−550cm−1.Wemethodandwasfoundtobeapproximatelyintheorderof10651presumethatthispeakwasmaskedunderabroadbandindicatinghighsensitivityofourmeasurements.TheSERSobservedat∼530cm−1correspondingtobackbonedeforma-spectrumwascarefullyanalyzedandtheobservedshiftsbothtionsthatarecommonlyobservedindisorderedpolypeptidesforbulkRamanandSERSweretabulated(Figure4AandowingtothepresenceofalargenumberofglycinesandTableS2).ThebackboneamidegroupmarkerssuchasamideI49,50alanines.andamideIIIregionsaswellasaromaticside-chainmarkers3190https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettersuchasPhe,Trp,andTyrwerecarefullyinspectedand(Y145Stop)(C-terminaltruncation)andPrP(90−231)(N-analyzed.TheSERSspectrumforPrP(23−231)wasterminaltruncation).ThesePrPconstructsretainedtheabilitydominatedbybandscorrespondingtoamideI,1658/1683topromoteagglomerationofsurface-modifiedsilvernano-cm−1;amideIII,1236/1257/1267cm−1;Phe,1005cm−1;Trp,particles(AgIMNPs)asevidentbyabsorptionandAFM1551and758cm−1andaFermidoubletat1344/1359cm−1;studies(FiguresS9andS10).ThisnanoparticleaggregationisTyr,643cm−1andaFermidoubletat829/854cm−1;andC−thoughttobedrivenbyelectrostaticsequestrationofHbending,1447cm−1.Besides,thepresenceofpositivelynegativelychargednanoparticlesbytheproteinconstructschargedresidues(Lys,Arg,andHis)facilitatedtheadsorptionsincePrP(Y145Stop)andPrP(90−231)alsocarryapositiveoftheunstructureddomaintothesurfaceofNPsresultinginacharge(+13.6and+4.3,respectively)underourexperimentalsignificantenhancementofthepeakat∼1581and1066cm−1condition.WefirstperformedthebulkRamanmeasurementscorrespondingtohistidineandC−Cstretching,respectively.andtheobtainedsecondarystructuralcontentsagreedwell34ThedeconvolutionoftheamideIandamideIIIregionofthewiththosereportedearlier(FigureS11;TableS1).WenextspectraandpercentageanalysisfortheSERSpeakofPrPrecordedtheSERSspectraforPrP(Y145Stop)thatmatchedrevealthepresenceofprimarilyα-helicesanddisordered/coilswiththebulkRamanspectralsignaturesasevidencedbytheasalsoshownpreviouslyusingNMRstudies(TableS1andcorrelationgraph(Figures4BandS12A).TheSERSspectrum34S2).TheuniquestructureofPrPrepresentsajuxtapositionforPrP(Y145Stop)wasdominatedbybandscorrespondingtoofdisorderedandordereddomains(Figure1C).TheamideIamideI,1662/1685cm−1;Phe,1004cm−1;Trp,1552and758deconvolutionindicatedthatthereisanenhancementfromcm−1anditsdoubletat1340/1360cm−1;Tyr,644cm−1andboththedisorderedN-terminalandorderedC-terminal;itsdoubletat825/853cm−1;andC−Hbending,1445cm−1however,uponcarefulinspectionandanalysis,weobserved(Figure4B).Besidesthis,therewasamajorenhancementofthattheSERSspectrumisdominatedbytheside-chainthepeakscorrespondingtohistidineandC−CstretchingatvibrationsfromN-terminalresiduesoftheprotein.Also,we1583and1063cm−1,respectively,similartothatobservedindidnotobserveanysignificantenhancementfordisulfidePrP(23−231).Thepeakat∼530cm−1correspondingtolinkagethatispresentintheC-terminalglobulardomain.Sincebackbonedeformationsofadisorderedpolypeptidechainistheelectromagneticenhancementdisplaysa1/r12distancealsoobserved.TheamideIregionoftheSERSspectrumfordependence,wespeculatethatthepositivelychargedPrP(Y145Stop)showed∼100%disordered/extended/ran-disorderedN-terminaltailattachestothenegativelychargeddom-coilconformation(TablesS1andS2).Thisisconsistentsurface-modifiednanoparticles,staysproximaltonanoparticles,withthefactthatC-terminaltruncationatresidue145yieldsandthereforeresultsinagreaterSERSenhancementasprimarilyadisorderedprotein.Ourresultsalsodemonstrated36comparedtotheglobulardomain.Additionally,thethattheintrinsicdisorderisretainedevenuponinteractionsdisorderedregioncanbeimaginedasafluctuatingdynamicwithnanoparticlesunderourSERSexperimentalcondition.structurewithalargehydrodynamicradius,whichenablesittoTheobservedsignalenhancementattheN-terminalsegmenthavealargesurfaceareaandgreatercaptureradiusforsimilartothatofthefull-lengthPrPindicatesanassociativeinteractionascomparedtoitsstructuralcounterpart.ThisledroleofhighnetpositivechargeandextendedsizeoftheustosurmisetheassociativeroleofthechargeandintrinsicallydisorderedN-terminusindominatingtheSERShydrodynamicradiiofintrinsicallydisorderedN-terminusinspectraofPrP.Theseresultsindicatedthatthepositively52dictatingtheSERSspectraofPrP.ThisexplanationisalsochargedN-terminaltailcanselectivelyilluminatethisconsistentwiththeobservationoflittleornoenhancementofdisorderedregioninourSERSmeasurements.OurnextthedisulfidebondpresentintheglobularC-terminaldomainquestionwaswhetherashorterN-terminaltailwouldallowusofPrP.todetecttheC-terminalglobulardomainofPrP.Inordertotestiftheobservedside-chainvibrationsintheTheSERSspectrumofPrP(90−231)thathasashorterN-SERSspectraindeedaroseduetotheintrinsicallydisorderedterminalsegmentwasdominatedbybandscorrespondingtoN-terminus,weadoptedtwostrategies.First,wecreatedaPrPamideI,1655/1681cm−1;Phe,1004cm−1;Trp,1551and750construct23−144withastopcodonmutationatresidue145cm−1;Tyr,639cm−1anditsdoubletat828/852cm−1;andC−[PrP(Y145Stop)]resultinginatruncatedproteinthatadoptsHbending,1448cm−1.ItshowedasimilaritywithitsbulkacompletelydisorderedstateasevidentbyitsCDsignatureRamanspectrumasalsoshowninthecorrelationgraph(FigureS8A).Wewouldalsoliketonoteherethatthis(Figure4C,S12B).TheanalysisoftheamideIbandrevealedamutationhasapathologicalsignificance,givingrisetotheGSS-higherfraction(∼45%)ofhelicalcontentsthatisexpectedfor53phenotype.IftheSERSenhancementinPrPindeedarisesanN-terminallytruncatedPrPandcorroboratestheprevious34fromanintrinsicallydisorderedregion,weshouldobserveresults(TablesS1andS2).InadditiontoprominentbandssimilarSERSspectraofPrP-Y145Stoptothatofthefull-lengthforamideI,amideIII,andotheraromaticside-chainmarkers,PrP(23−231)withsomeminordifferencesduetoaweakertherewerecertainstrikingdifferencesforPrP(90−231)enhancementoftheC-terminalglobulardomainofthefull-comparedtothefull-lengthprotein(Figure4).(i)Sincethelengthprotein.Second,weusedapartialN-terminaltruncationPrP(90−231)harborsasingleTrp,thesignalcorrespondingconstructPrP(90−231)havingashorterdisorderedN-toTrpwasmuchweakercomparedtothatobservedforseventerminaltailandanintactglobularC-terminaldomainthatisTrpresiduesinthefull-lengthPrP.(ii)Duetotheproximityofpredominantlyα-helicalinstructureasalsoindicatedbyitsCDtheC-terminaldomainwiththenanoparticlesurface,wespectrum(FigureS8B).WeexpectedthatthisproteinobservedasignificantenhancementforaminoacidspresentinconstructwouldprovideamuchstrongerRamanenhancementtheglobulardomainnamely,glutamate(Glu)andaspartateofresiduesbothfromdisorderedandfoldeddomainsduetoa(Asp)residues(1391cm−1)andmethionine(716,683,andmuchshorterlengthoftheN-terminaltail.800cm−1).(iii)Thepeakat∼530cm−1correspondingwithTotestourhypothesis,wenextsetouttoperformSERSbackbonedeformationswasmuchweakerforPrP(90−231)studieswiththesetwotruncatedPrPconstructsnamely,PrPduetoashorterdisorderedsegment.(iv)Asignificant3191https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure5.Schematicoftether-length-dependentSERSofPrPusingfunctionalizednanoparticles.enhancementinthedisulfide(−S−S−)vibrationalbandattetheringbetweenhighlypositivelychargedintrinsically∼500cm−1wasobserved.disordereddomainoftheproteinandsurface-modifiedThedisulfidelinkagebetweenCys179andCys214isnegativelychargednanoparticles(Figure5).ThissynergisticlocatedattheC-terminalglobulardomain(Figure1A)andwaseffectbetweentheSERSsubstrateandanalyteresultsinnotpreviouslyvisibleeitherbybulkRamanorbySERSofthesignificantlyenhancedandreproducibleRamansignalsinfull-lengthprotein.TheshorteningoftheN-terminaldomainaqueoussolutions.Bychangingthelengthofthepositivelybringsthisdisulfideandothernonaromaticaminoacidswithinthecriticalnear-fielddistancefromthenanoparticlesurfacechargedN-terminaldomain,wewereabletoselectivelyrequiredfortheplasmonicenhancement.Next,weanalyzedenhanceandcharacterizedifferentpartsoftheproteinusingtheconformationofthedisulfidebridgethatisahallmarkofSERS.ThehighsensitivityofSERSwillbeofprimethetertiarystructureofPrP.TheRamanpeakat∼500cm−1isimportanceinthedetection,quantification,andcharacter-suggestiveofagauche−gauche−gaucheconformationandizationofthePrPexpressionlevelsandmisfoldinginbiologicalreflectstheinternalrotationaboutC−SandC−Cbondsinfluids.Webelievethatourtether-length-dependentSERSCα−Cβ−S−S−Cβ−Cαconformations.Despitethepresenceofmethodologywillbeapplicableintheselectivesequestrationnonaromaticaminoacidssuchasaspartates,glutamates,andandcharacterizationofotherproteinscontainingpositivelymethionineaswellasadisulfidebondinfull-lengthPrP,wechargedintrinsicallydisorderedsegmentsinthemilieuofadidnotobservesuchhighenhancementssincetheSERSspectrumforfull-lengthPrPwasdominatedbyaromaticaminocomplexbiologicalmixture.Additionally,engineeringpos-acidsresidingattheN-terminaldomain(Figure4A).Thehighitivelychargeddisorderedtracksateitherterminusofaproteinscatteringcross-sectionduetothepolarizabilityofthewillserveasapotentstrategytoselectivelysequesteranddelocalizedelectronsysteminringstructuresofaromaticcharacterizetheproteinofinterestusingultrasensitiveand54,55aminoacidsrendersthemhighlyRaman-active.Inlabel-freevibrationalRamanspectroscopy.contrast,feweraromaticaminoacidresiduesalongwithashorterN-terminallengthprovidedamuchgreateropportunity■fortheaminoacidside-chainsoftheC-terminaldomaintobeASSOCIATEDCONTENTenhancedinourSERSexperimentsforPrP(90−231)(Figure*sıSupportingInformationS13).Additionally,tomakeaquantitativeassessmentoftheSupportingInformationcontains.TheSupportingInformationcontentofaromaticresidues(TrpandPhe),weplottedtheisavailablefreeofchargeathttps://pubs.acs.org/doi/10.1021/ratiooftherelativepeakintensities[(I758/(I758+I1005)]againstacs.jpclett.1c00240.39theratio[Trp/(Trp+Phe)](FigureS14).ThisplotshowedalinearcorrelationbetweentheintensityratioandtheMaterialsandMethodssectionandsupportingfigures,contentsofTrpandPheforallthreeconstructsofPrP.Theseincludingabsorbance,CD,SERS,andRamanspectra,ζ-resultsindicatethatourSERSstudiescanalsoallowustomakepotentialplots,SEMandAFMimages,correlationquantitativeassessmentsofaromaticaminoacidcontentsingraph,andaplotofrelativepeakintensityratios(Figurestheprotein.S1−14),andsupportingtables,includingthepercentageInsummary,wewereabletodemonstrateadirect,contributionofdifferentsecondarystructuralelementsandpeakassignmentsofsomeRamanandSERSspectraultrasensitive,label-free,in-solutionSERScharacterizationof(TablesS1andS2)(PDF)PrPunderthenativeconditionbyutilizingtheelectrostatic3192https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter■(9)Brown,P.;Cervenáková,L.;Diringer,H.BloodInfectivityandAUTHORINFORMATIONtheProspectsforaDiagnosticScreeningTestinCreutzfeldt-JakobCorrespondingAuthorDisease.J.Lab.Clin.Med.2001,137,5−13.SamratMukhopadhyay−CentreforProteinScience,Design(10)Moda,F.;Gambetti,P.;Notari,S.;Concha-Marambio,L.;andEngineering,DepartmentofChemicalSciences,andCatania,M.;Park,K.W.;Maderna,E.;Suardi,S.;Haik,S.;Brandel,J.DepartmentofBiologicalSciences,IndianInstituteofScienceP.;Ironside,J.;Knight,R.;Tagliavini,F.;Soto,C.PrionsintheUrineEducationandResearch(IISER),Mohali,Punjab140306,ofPatientswithVariantCreutzfeldt-JakobDisease.N.Engl.J.Med.India;orcid.org/0000-0003-1242-9958;2014,371,530−539.Email:mukhopadhyay@iisermohali.ac.in(11)Knight,R.TheRiskofTransmittingPrionDiseasebyBloodorPlasmaProducts.Transfus.Apher.Sci.2010,43,387−391.Authors(12)Sano,K.;Satoh,K.;Atarashi,R.;Takashima,H.;Iwasaki,Y.;SwapnilSingh−CentreforProteinScience,DesignandYoshida,M.;Sanjo,N.;Murai,H.;Mizusawa,H.;Schmitz,M.;Zerr,EngineeringandDepartmentofBiologicalSciences,IndianI.;Kim,Y.S.;Nishida,N.EarlyDetectionofAbnormalPrionProteinInstituteofScienceEducationandResearch(IISER),Mohali,inGeneticHumanPrionDiseasesNowPossibleUsingReal-TimePunjab140306,IndiaQUICAssay.PLoSOne2013,8,e54915.AishwaryaAgarwal−CentreforProteinScience,Designand(13)Saborio,G.P.;Permanne,B.;Soto,C.SensitiveDetectionofEngineeringandDepartmentofBiologicalSciences,IndianPathologicalPrionProteinbyCyclicAmplicationofProteinInstituteofScienceEducationandResearch(IISER),Mohali,Misfolding.Nature2001,411,810−813.(14)Devitt,G.;Howard,K.;Mudher,A.;Mahajan,S.RamanPunjab140306,IndiaSpectroscopy:AnEmergingToolinNeurodegenerativeDiseaseAnamikaAvni−CentreforProteinScience,DesignandResearchandDiagnosis.ACSChem.Neurosci.2018,9,404−420.EngineeringandDepartmentofChemicalSciences,Indian(15)Thomas,G.J.RamanSpectroscopyofProteinandNucleicInstituteofScienceEducationandResearch(IISER),Mohali,AcidAssemblies.Annu.Rev.Biophys.Biomol.Struct.1999,28,1−27.Punjab140306,India(16)Carey,P.R.RamanSpectroscopy,theSleepingGiantinCompletecontactinformationisavailableat:StructuralBiology,Awakes.J.Biol.Chem.1999,274,26625−26628.https://pubs.acs.org/10.1021/acs.jpclett.1c00240(17)Matousek,P.;Stone,N.EmergingConceptsinDeepRamanSpectroscopyofBiologicalTissue.Analyst2009,134,1058−1066.(18)Bhowmik,D.;Mote,K.R.;MacLaughlin,C.M.;Biswas,N.;AuthorContributions∥Chandra,B.;Basu,J.K.;Walker,G.C.;Madhu,P.K.;Maiti,S.Cell-S.S.andA.Agarwalcontributedequally.Membrane-MimickingLipid-CoatedNanoparticlesConferRamanNotesEnhancementtoMembraneProteinsandRevealMembrane-AttachedTheauthorsdeclarenocompetingfinancialinterest.Amyloid-βConformation.ACSNano2015,9,9070−9077.(19)Rygula,A.;Majzner,K.;Marzec,K.M.;Kaczor,A.;Pilarczyk,■ACKNOWLEDGMENTSM.;Baranska,M.RamanSpectroscopyofProteins:AReview.J.RamanSpectrosc.2013,44,1061−1076.WethankIISERMohali,DepartmentofScienceand(20)Bruzas,I.;Lum,W.;Gorunmez,Z.;Sagle,L.AdvancesinTechnology(Nano-MissiongranttoS.M.),DepartmentofSurface-EnhancedRamanSpectroscopy(SERS)SubstratesforLipidBiotechnology(fellowshiptoA.Agarwal),andtheMinistryofandProteinCharacterization:SensingandBeyond.Analyst2018,143,HumanResourceDevelopment,GovernmentofIndia(Centre3990−4008.ofExcellencegranttoS.M.),forfinancialsupport;Prof.P.(21)Feliu,N.;Hassan,M.;GarciaRico,E.;Cui,D.;Parak,W.;Guptasarma(IISERMohali)andProf.W.Surewicz(CaseAlvarez-Puebla,R.SERSQuantificationandCharacterizationofWesternReserveUniversity)fortheirkindgiftofDNAProteinsandOtherBiomolecules.Langmuir2017,33,9711−9730.plasmids;andDr.M.Bhattacharya(ThaparInstitute)andthe(22)Langer,J.;JimenezdeAberasturi,D.;Aizpurua,J.;Alvarez-membersoftheMukhopadhyaylabfortheirvaluablePuebla,R.A.;Auguie,B.;Baumberg,J.J.;Bazan,G.C.;Bell,S.E.J.;comments.Boisen,A.;Brolo,A.G.;Choo,J.;Cialla-May,D.;Deckert,V.;Fabris,L.;Faulds,K.;GarciadeAbajo,F.J.;Goodacre,R.;Graham,D.;Haes,■A.J.;Haynes,C.L.;Huck,C.;Itoh,T.;Kall,M.;Kneipp,J.;Kotov,N.REFERENCESA.;Kuang,H.;LeRu,E.C.;Lee,H.K.;Li,J.F.;Ling,X.Y.;Maier,S.(1)Prusiner,S.B.PrionBiology;ColdSpringHarbourLaboratoryA.;Mayerhofer,T.;Moskovits,M.;Murakoshi,K.;Nam,J.M.;Nie,Press:2017.S.;Ozaki,Y.;Pastoriza-Santos,I.;Perez-Juste,J.;Popp,J.;Pucci,A.;(2)Scheckel,C.;Aguzzi,A.Prions,PrionoidsandProteinReich,S.;Ren,B.;Schatz,G.C.;Shegai,T.;Schlucker,S.;Tay,L.L.;MisfoldingDisorders.Nat.Rev.Genet.2018,19,405−418.Thomas,K.G.;Tian,Z.Q.;VanDuyne,R.P.;Vo-Dinh,T.;Wang,Y.;(3)Collinge,J.PrionDiseasesofHumansandAnimals:TheirWillets,K.A.;Xu,C.;Xu,H.;Xu,Y.;Yamamoto,Y.S.;Zhao,B.;Liz-CausesandMolecularBasis.Annu.Rev.Neurosci.2001,24,519−550.(4)Dearmond,S.J.;McKinley,M.P.;Barry,R.A.;Braunfeld,M.B.;Marzan,L.M.PresentandFutureofSurface-EnhancedRamanMcColloch,J.R.;Prusinert,S.B.IdentificationofPrionAmyloidScattering.ACSNano2020,14,28−117.FilamentsinScrapie-InfectedBrain.Cell1985,41,221−235.(23)Zong,C.;Xu,M.;Xu,L.J.;Wei,T.;Ma,X.;Zheng,X.S.;Hu,(5)Rodriguez,J.A.;Jiang,L.;Eisenberg,D.S.TowardtheAtomicR.;Ren,B.Surface-EnhancedRamanSpectroscopyforBioanalysis:StructureofPrPSc.ColdSpringHarborPerspect.Biol.2017,9,ReliabilityandChallenges.Chem.Rev.2018,118,4946−4980.a031336.(24)Lane,L.A.;Qian,X.;Nie,S.SERSNanoparticlesinMedicine:(6)Glynn,C.;Sawaya,M.R.;Ge,P.;Gallagher-Jones,M.;Short,C.FromLabel-FreeDetectiontoSpectroscopicTagging.Chem.Rev.W.;Bowman,R.;Apostol,M.;Zhou,H.;Eisenberg,D.S.;Rodriguez,2015,115,10489−10529.J.A.Cryo-EMStructureofaHumanPrionFibrilwithaHydrophobic,(25)Pilot,R.;Signorini,R.;Durante,C.;Orian,L.;Bhamidipati,M.;Protease-ResistantCore.Nat.Struct.Mol.Biol.2020,27,417−423.Fabris,L.AReviewonSurface-EnhancedRamanScattering.(7)Terry,C.;Wadsworth,J.D.F.RecentAdvancesinUnder-Biosensors2019,9,57.standingMammalianPrionStructure:AMiniReview.Front.Mol.(26)Chalapathi,D.;Padmanabhan,S.;Manjithaya,R.;Narayana,C.Neurosci.2019,12,00169.Surface-EnhancedRamanSpectroscopyasaToolforDistinguishing(8)Diaz-espinoza,R.;Soto,C.High-ResolutionStructureofExtracellularVesiclesunderAutophagicConditions:AMarkerforInfectiousPrionProtein.Nat.Struct.Mol.Biol.2012,19,370−377.DiseaseDiagnostics.J.Phys.Chem.B2020,124,10952−10960.3193https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
7TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(27)Serra,A.;Manno,D.;Filippo,E.;Buccolieri,A.;Urso,E.;(47)Kuhar,N.;Sil,S.;Verma,T.;Umapathy,S.ChallengesinRizzello,A.;Maffia,M.SERSBasedOpticalSensortoDetectPrionApplicationofRamanSpectroscopytoBiologyandMaterials.RSCProteininNeurodegenerateLivingCells.Sens.Actuators,B2011,156,Adv.2018,8,25888−25908.479−485.(48)Maiti,N.C.;Apetri,M.M.;Zagorski,M.G.;Carey,P.R.;(28)Alvarez-Puebla,R.A.;Agarwal,A.;Manna,P.;Khanal,B.P.;Anderson,V.E.RamanSpectroscopicCharacterizationofSecondaryAldeanueva-Potel,P.;Carbo-Argibay,E.;Pazos-Perez,N.;Vigderman,StructureinNativelyUnfoldedProteins:α-Synuclein.J.Am.Chem.L.;Zubarev,E.R.;Kotov,N.A.;Liz-Marzan,L.M.GoldNanorodsSoc.2004,126,2399−2408.3D-SupercrystalsasSurface-EnhancedRamanScatteringSpectrosco-(49)Chen,L.X.;Strauss,H.L.;Snyder,R.G.AnalysisofthepySubstratesfortheRapidDetectionofScrambledPrions.Proc.Natl.DelocalizedRamanModesofConformationallyDisorderedPoly-Acad.Sci.U.S.A.2011,108,8157−8161.peptides.Biophys.J.1993,64,1533−1541.(29)Manno,D.;Filippo,E.;Fiore,R.;Serra,A.;Urso,E.;Rizzello,(50)Mensch,C.;Bultinck,P.;Johannessen,C.ConformationalA.;Maffia,M.MonitoringPrionProteinExpressioninComplexDisorderandDynamicsofProteinsSensedbyRamanOpticalActivity.ACSOmega2018,3,12944−12955.BiologicalSamplesbySERSforDiagnosticApplications.Nano-(51)LeRu,E.C.;Blackie,M.;Meyer,M.;Etchegoin,P.G.Surfacetechnology2010,21,165502.EnhancedRamanScatteringEnhancementFactors:AComprehensive(30)Hu,P.P.;Liu,H.;Zhan,L.;Zheng,L.L.;Huang,C.Z.Study.J.Phys.Chem.C2007,111,13794−13803.CoomassieBrilliantBlueR-250asaNewSurface-EnhancedRaman(52)Avci,E.;Culha,M.InfluenceofProteinSizeonSurface-ScatteringProbeforPrionProteinthroughaDual-AptamerEnhancedRamanScattering(SERS)SpectrainBinaryProteinMechanism.Talanta2015,139,35−39.Mixtures.Appl.Spectrosc.2014,68,890−899.(31)Chowdhury,M.H.;Atkinson,B.;Good,T.;Cote,G.L.(53)Zweckstetter,M.ConservedAmyloidCoreStructureofStopSurface-EnhancedRamanSpectroscopyfortheDetectionofMutantsoftheHumanPrionProtein.Prion2013,7,193−197.PathogenicDNAandProteininFoods.Proc.SPIE2003,4965,111.(54)Podstawka,E.;Ozaki,Y.;Proniewicz,L.M.PartI:Surface-(32)Xu,L.J.;Lei,Z.C.;Li,J.;Zong,C.;Yang,C.J.;Ren,B.Label-EnhancedRamanSpectroscopyInvestigationofAminoAcidsandFreeSurface-EnhancedRamanSpectroscopyDetectionofDNAwithTheirHomodipeptidesAdsorbedonColloidalSilver.Appl.Spectrosc.Single-BaseSensitivity.J.Am.Chem.Soc.2015,137,5149−5154.2004,58,570−580.(33)Xie,L.;Lu,J.;Liu,T.;Chen,G.;Liu,G.;Ren,B.;Tian,Z.Key(55)Prochazka,M.Surface-EnhancedRamanSpectroscopy:Bio-RoleofDirectAdsorptiononSERSSensitivity:SynergisticEffectanalytical,BiomolecularandMedicalApplications;Springer:2017.amongTarget,AggregatingAgent,andSurfacewithAuorAgColloidasSurface-EnhancedRamanSpectroscopySubstrate.J.Phys.Chem.Lett.2020,11,1022−1029.(34)Zahn,R.;Liu,A.;Luhrs,T.;Riek,R.;vonSchroetter,C.;LopezGarcia,F.;Billeter,M.;Calzolai,L.;Wider,G.;Wuthrich,K.NMRSolutionStructureoftheHumanPrionProtein.Proc.Natl.Acad.Sci.U.S.A.2000,97,145−150.(35)Zahn,R.;vonSchroetter,C.;Wuthrich,K.HumanPrionProteinsExpressedinEscherichiacoliandPurifiedbyHigh-AffinityColumnRefolding.FEBSLett.1997,417,400−404.(36)Kneipp,K.;Kneipp,H.;Itzkan,I.;Dasari,R.R.;Feld,M.S.Surface-EnhancedRamanScatteringandBiophysics.J.Phys.:Condens.Matter2002,14,R597−R624.(37)GarcíadeAbajo,F.J.Colloquium:LightScatteringbyParticleandHoleArrays.Rev.Mod.Phys.2007,79,1267−1290.(38)Lee,P.C.;Meisel,D.AdsorptionandSurface-EnhancedRamanofDyesonSilverandGoldSols.J.Phys.Chem.1982,86,3391−3395.(39)Xu,L.J.;Zong,C.;Zheng,X.S.;Hu,P.;Feng,J.M.;Ren,B.Label-FreeDetectionofNativeProteinsbySurface-EnhancedRamanSpectroscopyUsingIodide-ModifiedNanoparticles.Anal.Chem.2014,86,2238−2245.(40)Pillai,Z.S.;Kamat,P.V.WhatFactorsControltheSizeandShapeofSilverNanoparticlesintheCitrateIonReductionMethod?J.Phys.Chem.B2004,108,945−951.(41)Paramelle,D.;Sadovoy,A.;Gorelik,S.;Free,P.;Hobley,J.;Fernig,D.G.ARapidMethodtoEstimatetheConcentrationofCitrateCappedSilverNanoparticlesfromUV-VisibleLightSpectra.Analyst2014,139,4855−4861.(42)Torres-Nuñez,A.;Faulds,K.;Graham,D.;Alvarez-Puebla,R.A.;Guerrini,L.SilverColloidsasPlasmonicSubstratesforDirectLabel-FreeSurface-EnhancedRamanScatteringAnalysisofDNA.Analyst2016,141,5170−5180.(43)Kahraman,M.;Sur,I.;Ç̇ulha,M.Label-FreeDetectionofProteinsfromSelf-AssembledProtein-SilverNanoparticleStructuresUsingSurface-EnhancedRamanScattering.Anal.Chem.2010,82,7596−7602.(44)Álvarez-Puebla,R.A.EffectsoftheExcitationWavelengthontheSERSSpectrum.J.Phys.Chem.Lett.2012,3,857−866.(45)Tuma,R.RamanSpectroscopyofProteins:fromPeptidestoLargeAssemblies.J.RamanSpectrosc.2005,36,307−319.(46)Szekeres,G.P.;Kneipp,J.SERSProbingofProteinsinGoldNanoparticleAgglomerates.Front.Chem.2019,7,30.3194https://doi.org/10.1021/acs.jpclett.1c00240J.Phys.Chem.Lett.2021,12,3187−3194
此文档下载收益归作者所有