Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown

Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown

ID:81823232

大小:4.67 MB

页数:8页

时间:2023-07-20

上传者:U-14522
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第1页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第2页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第3页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第4页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第5页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第6页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第7页
Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown_第8页
资源描述:

《Annihilation and Control of Chiral Domain Walls with Magnetic Fields - Karna et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

ThisisanopenaccessarticlepublishedunderaCreativeCommonsAttribution(CC-BY)License,whichpermitsunrestricteduse,distributionandreproductioninanymedium,providedtheauthorandsourcearecited.pubs.acs.org/NanoLettLetterAnnihilationandControlofChiralDomainWallswithMagneticFieldsSunilK.Karna,*MadalynnMarshall,WeiweiXie,LisaDeBeer-Schmitt,DavidP.Young,IlyaVekhter,WilliamA.Shelton,AndrasKovacs,MichalisCharilaou,andJohnF.DiTusá*CiteThis:NanoLett.2021,21,1205−1212ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thecontrolofdomainwallsiscentraltonearlyallmagnetictechnologies,particularlyforinformationstorageandspintronics.Creativeattemptstoincreasestoragedensityneedtoovercomevolatilityduetothermalfluctuationsofnanoscopicdomainsandheatinglimitations.Topologicaldefects,suchassolitons,skyrmions,andmerons,maybemuchlesssusceptibletofluctuations,owingtotopologicalconstraints,whilealsobeingcontrollablewithlowcurrentdensities.Here,wepresentthefirstevidenceforsoliton/solitonandsoliton/antisolitondomainwallsinthehexagonalchiralmagnetMn1/3NbS2thatrespondasymmetricallytomagneticfieldsandexhibitpair-annihilation.Thisisimportantbecauseitsuggeststhepossibilityofcontrollingtheoccurrenceofsolitonpairsandtheuseofsmallfieldsorsmallcurrentstocontrolnanoscopicmagneticdomains.Specifically,ourdatasuggestthateithersoliton/solitonorsoliton/antisolitonpairscanbestabilizedbytuningthebalancebetweenintrinsicexchangeinteractionsandlong-rangemagnetostaticsinrestrictedgeometries.KEYWORDS:Solitonpairdynamics,Nanoscopicchiraldomainwalls,Dzyaloshinskii−Moriyainteraction,Chiralmagnets,andShapeanisotropy4,18,19Adramaticincreaseininvestigationsofmagnetisminwalls(DW).Howthispicturechangeswithvariationsinmaterialshavingachiralcrystalstructurefollowedthethephysicalparametersthatcontrolthesizeandcharacterofdiscoveryofregulararraysofskyrmions,whirlsofthelocal20DWhasyettobefullyexplored.magnetizationallwiththesamechirality(handedness)Oneroutetowardproducinghexagonalchiralmagnetshas1−7Downloadedvia42.153.129.17onMay14,2021at10:01:16(UTC).arrangedinalattice,inMnSi.Thesesuggestedanewbeentointercalatetransitionmetalelementsbetweentheroutetowardovercomingdomainwallvolatility,therandomhexagonallayersofvanderWaalscompounds.4,12−23Here,weswitchingofsmallmagneticdomainsduetothermalintercalatethe3dtransitionmetalMnintoNbS2(Figure1a),8−15fluctuations,whichmaybeenhancedinlow-dimensionalformingamagnetwithacrystalstructurethatlacksbothstructureswithmagneticanisotropyandwheretheinterplayofinversionandmirrorsymmetries.ThemagneticpropertiesareSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.topologyandthermalnucleationhaslongbeenrealized.16exploredthroughmagnetometry,small-angleneutronscatter-FurtherexplorationofMnSimadeclearthattheunderlyinging(SANS),andFresnelimaginginLorentztransmissioncrystalsymmetryplaysadominantroleindeterminingtheelectronmicroscopy(LTEM).Wecomparethesedatawithmagneticstatesthatemergeinthisandsimilarcubiccrystals1,3,7predictionsofmodelsandmicromagneticsimulationsthatwiththeB20symmetry.ThesmallcrystallineanisotropycorroboratethediscoveryofalinearsolitonlatticeandtheandcubicsymmetryoftheB20’sareessentialtotheformationobservationofsoliton−antisolitonannihilationbyanexternalofhelicaldomainsinthegroundstate,aswellastheconical5magneticfield,confirmingtheoreticalpredictions.Here,aandskyrmionlatticestatesthatappearwithsmallrotational-solitonwithopposite-handedmodulationisreferredtoasansymmetry-breakingmagneticfields.Incontrast,thereducedantisolitontodistinguishfromthehomochiralcase.symmetryandrelatedcrystallineanisotropyfoundinhexagonalchiralmagnetsresultinaverydifferentsetofmagneticstates.7,17Here,thehelicalpitchinthemagneticallyorderedReceived:August6,2020stateisconfinedtothecrystallographicc-axisevenwhenRevised:January17,2021exposedtoamagneticfield,H.Thus,forHlyingperpendicularPublished:January25,2021tothec-axis,skyrmionlatticesarenotfound.Instead,experimentsindicateadistortedhelicalstructureallowingthepossibilityoftheformationofchiralmagneticsolitondomain©2021TheAuthors.PublishedbyAmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.nanolett.0c031991205NanoLett.2021,21,1205−1212

1NanoLetterspubs.acs.org/NanoLettLetterFigure1.CrystalstructureandmagneticmicrostructureofMn1/3NbS2.(a)Crystalstructure:theintercalatedMnatomsoccupytheoctahedralinterstitialholes(2csite)betweentrigonalprismaticlayersof2H-NbS2intheidealcase.(b)DefocusedFresnelimagesforan∼230nmthickregionofsample1recordedat12K.Aseriesofalternatingbrightlines(domainwalls)separatedbygrayregionsthatarenotstrictlyperiodicareobserved.(c)Lineprofileoftheintensityshownin(b)integratedalongthe(12̅0)directionforthewhite-boxedregionshownin(b).(d)Fresnelimageforan∼130nmthickregionofsample1recordedat12K.Aseriesofalternatingbrightanddarklinesperpendiculartothec-axisofthecrystalareobservedthatlackastrictperiodicity.(e)Lineprofileoftheintensityshownin(d)integratedalongthe(12̅0)directionforthewhite-boxedregionshownin(b).(f−k)Fresnelimagesofsample2ofthickness∼160nminzeroandappliedmagneticfields(identifiedinthefigure)recordedat14K.Arrowsindicatethepositionofalternatingbright(whitearrows)anddark(blackarrows)linesofcontrast.Schematicsofthemagneticstructureatthetopofpanels(b,f)aresuggestedbyourmicromagneticsimulations.WhileourpreviousinvestigationsofMn1/3NbS2revealedmomentslyingintheplanenormaltotheelectronbeam(i.e.,momentslyingalongtheNbS2planesforminganearlythelamellaplane),thecontrastpatterninFigure1bimpliesa21,2324ferromagneticstatebelowTc=45K,Fresneldefocusedrotationofthemagnetizationwithinthehexagonalab-planeofimagestakenonthinlamella(Figure1)displayferromagneticthecrystalashighlightedbythesharpbrightstripes.Thisdomainsofhundredsofnanometersinsizewithchiral(Bloch)imageisconsistentwithadistortedhelicalmagneticstructureDW.TheDWpropagatealongthecrystallographicc-axiswithwheremagneticmomentstendtolieintheplaneofthelamellaarotationintheNbS2plane(Figure1b,c).TheseFresnelmodifyingthiseasy-planesystemtowardaneffectiveeasy-axismicrographsofMn1/3NbS2differsignificantlyfromwhatwasone.TheappearanceofalternatingdarkandbrightstripesinfoundinisostructuralCr1/3NbS2whereasimplehelimagneticthethinnersamples(Figure1d,f)separatedbylargerregionsofstatewithequallyspacedbrightanddarkstripeswasobservedslowlyvaryingornearlyconstantcontrastissubstantially4inLTEMforathinlamella.Furthermore,Figure1b,d,fdifferentfromthatseeninthethickersample(Figure1b)orin4demonstratesadramaticchangewithareductionoftheCr1/3NbS2requiringadifferentinterpretation.thickness,t,ofthelamella.Fortherelativelythickspecimens,tPerhapsmoreintriguingistheresponseofthecontrast=230nm(Figure1b,c),anearlyperiodicsequenceofbrightpatterntosmallHorientedparalleltotheelectronbeam,linesinterspacedbetweendarkerregionsatdistancesof∼250Figure1g−k(andatseveralotherfieldsinFiguresS1−S3)).nmalongthec-axisappearedwhenimagesweretakenat12K.Forfieldsofonesign(definedpositivehere),darkstripesareThesemicrographschangesignificantlyforthinnerlamella,t∼seentotranslaterightwardandbrightstripesleftwarduntil130nmFigure1dandt∼160nmFigure1f,wherealternatingtheyapproacheachotherabove30mTformingdark/brightbrightanddarkstripesareseparatedbygrayregionsofroughlypairs.ForlargerH(Figure1i),theybegintoannihilateeach1μmalongthec-axis.Again,strictperiodicityisnotobserved.otherwithvestigesofthepairsapparentattheedgeoftheForthethreesamplesthatwehavemeasured,warmingabovesamplesothatthecontrastpersistsattheupperedge.The25Kcausesalossofcontrast,andsubsequentcoolingresultscontrastlinesthatpersistmergeatadistanceofafewhundredinasimilarpatternofstripes,albeitatadifferentlocationnanometersfromtheedgewherethecontrastislost.withinthefieldofview[seeVideoS1inSupportingSignificanthysteresisisapparentasHdecreases(FigureS1j)Information(SI)].Thissuggestsamagneticoriginfortheuntilthedirectionswitches(negativeH),causingthecontrast,aconclusionstrengthenedbythesensitivityofthereappearanceofalternatingdarkandbrightstripes.ThesecontrastpatterntosmallfieldasdemonstratedinFigure1g−k.stripesmoveinanoppositedirectionastheHisincreasedinKeepinginmindthatLTEMisonlysensitivetomagneticthenegativesense,formingtightbright/darkpairs(FigureS1k1206https://dx.doi.org/10.1021/acs.nanolett.0c03199NanoLett.2021,21,1205−1212

2NanoLetterspubs.acs.org/NanoLettLetterFigure2.Linearsolitonlattice.Snapshotsfromthemicromagneticsimulationsshowing(a)acontourplotofthea-componentofthemagnetizationatzeroexternalfieldforathicksampleexhibitingalinearsolitonlatticeintheformofrepeatingdomain-wallpairs.(b)Schematicdemonstratingthegeneralizedparametrizationofthemagnetizationvectorforthecontourshownin(a).Here,eachdomainwallinthepairhasoppositepolarity,buttheyallhavethesamehandedness,whichisdeterminedbythesignoftheDMI.(c)Contourplotofthea-componentofthemagnetizationforathicksampleinafield,H=0.1T,exhibitingamagneticsolitonlatticestate.(d)Schematichighlightinga2πright-handedchiraldomainwall.Ifthesampleisthinner,however,magnetostaticinteractionsplayadominantroleanddomain-wallpairswiththesamepolarityandopposinghandednessoccur,asshownin(e).(f)Withtheapplicationofamagneticfield,athinsamplelacksmuchofthetopologicalprotectionenjoyedbythethickersampleduetotheproximityofchiraldomainwallsofoppositehandedness.Generalizedparametrizationofthemagnetizationvectorfora(g)right-handed(region1)and(h)left-handed(region2)π-domainwall.(i)Schematicdemonstrationofapairofhomochiraldomainwallpairs(region3).andFigureS2).Thisunusualasymmetryinthemotionofmakeanalyticprogress,wereplacethedemagnetizationtermchiralDWisnotyetunderstood.However,itislikelyawiththeeffectivein-planeanisotropy,K̃,thatincreaseswithconsequenceoftheDzyaloshinskii−Moriyainteraction(DMI)decreasingthicknessofthesampleandfavorsspinsintheplaneonDWandinteractionsbetweenthemsimilartothatobservedofthelamellae,thatis,withthetermK̃sin2ϕ.Thisapproachinferromagneticfilmswithperpendicularmagneticaniso-neglectsedgeeffectsthatarecapturedbythefullsimulations25tropy.Alternatively,itmaybeaconsequenceofthevariationbutisadequateforclassifyingthephasesofthemodel.ofsamplethicknessalongthelamella.Undertheseassumptions,forfieldintheeasyplanebutInsightintotheseresultsaremadebyconsideringamodelnormaltothelamellae,thephaseϕ(z)satisfiesthedoublewherethetotalenergydensitycontainscontributionsfromthesine-Gordon(dSG)equation,2Aϕzz−K̃sin2ϕ+Hcosϕ=0.exchangestiffness,A,easy-planeanisotropyK,DMI,D,TheenergyofthesolutionsismodifiedbytheDMI,whichcouplingtotheexternalmagneticfield,H,andthedipole−distinguishesthisproblemfromotherphysicalcontextswhere26,27dipoleinteractionsviaalocaldemagnetizingfieldHdmthedSGappears.ForK̃=H=0,werecoverthewell-knownhelicalstate,ϕ(z)=q0zwithq0∼D/2A.Amuch22I=∇+AK()()mmmc+·∇D(×−m)μ0MsH·mlongerpitchofthehelixinMn1/3NbS2comparedtoCr1/3NbS221281(∼250nmversus48nm)indicatesasmallerDMIstrength−·μ0MsdHmm.(1)andthereforegreaterroleofthedipolar-drivenanisotropy.For2K̃≠0,H=0,thespinsprefertobeintheplaneofthelamellae,Here,m=M/MsisthemagnetizationunitvectorwithMsasϕ=0,π,andthesetwoclassicalconfigurationsareconnectedthesaturationmagnetization.WeusethismodelbothtobyBlochDW,whicharethesolutionsofthesine-Gordonperformthefullmicromagneticsimulations(seeMethods)andequationsforthephaseϕ(z).TheDMIinteractionlowerstounderstandthemainfeaturesoftheexperimentallyobserved(raises)theenergyoftheseDWtobeEAsK±∼2K̃±Dstructureusingasimplifiedcontinuumdescription.Inthelatterdependingonthechirality(windingnumber,approach,wetakeKtobelargeenoughsothatthespinsare1+∞w==∫ϕd1z±).Therefore,foranisotropies0

3NanoLetterspubs.acs.org/NanoLettLetterFigure3.Magneticproperties.(a)ProposedmagneticphasediagramofMn1/3NbS2asafunctionoftemperature,T,andmagneticfield,H,appliedperpendiculartothecrystallographicc-axis.PhaseIisahelicalmagneticphaselackingstrictperiodicity,phaseIIisanearlyferromagneticphasethatisnotfullycharacterized,whereasphasesIIIandIII′arenearlyfullypolarizedmagneticphases,andtheregionabove45K(labeledPM)isparamagnetic.Theregionnearthecriticaltemperature,Tc=45K,ischaracterizedbyapeakintheTdependenceoftherealpartoftheacsusceptibility,χ′(T),atfiniteH(panelc)andFigureS5b(denotedasT1)andplottedinthephasediagramassolidbluestars.AtlowerT,weobservetwodistinctmaximaintheimaginarypartoftheacsusceptibility,χ″(T)(paneldandFigureS5d)thataredesignatedinpanelaasopenredtriangles(T2)andopengreensquares(T3).T2andT3arewellcorrelatedwithfeaturesintheHdependenceoftherealpartofχ′(paneleandFigureS5a),whereH1(solidgreensquaresin(a))denotesthelowfieldminimumandH2(solidredtrianglesin(a))denotesthemaximumatslightlyhigherH.SolidpinkcirclesindicateH3,themaximainχ″(H)(panelf)andFigureS5a),whichappeartotrackT2andH2atslightlyhigherH.H3alsotracksthesaturationfieldinthemagnetization,M(H),(panelbanddesignatedbypurplediamondsinpanela)butatasomewhatsmallerH.Atlowertemperatures,thereisahysteresisobservedinM(H)(panelb)witharangeindicatedbythedottedlinesinpanela.Theuppertemperaturelimitofthehystereticregioncorrelateswelloverarangeofthephasediagramwiththemaximuminthederivativeofχ″(T)withrespecttoT(dχ″/dT)(panelfandtheinsettoFigureS5c),whichisindictedinpanelaassolidbluepentagons(T4).Insettopanelf:Tdependenceofthemagnitudeofthemaximuminχ″(H)shownin(f).Blochπ-DW.ThisagreeswiththeresultsofsimulationsSmall(large)kinkshavephasevaryingintheregions(ϕ0,π−presentedinFigure2a,bandlikelycorrespondstotheLTEM31ϕ0)and(−π−ϕ0,ϕ0)respectively.SimilarphenomenadatainFigure1b,c.Theoriginofthisstateissimilartothat(withoutDMI)havebeenpredictedandanalyzedintheB-appearingforK̃=0underafinitefield,wheretheenergyof2πphaseof3He.32,33Abovethecriticalfield,spinsarepolarized,solitons(versusπDW)isEAsh±∼±2HD,sothatachiralsmallkinksvanish,andtheenergyofthelargekinks229continuouslytransformsintothatofthe2πsolitonknownsolitonlatticeisstabilizedforH≤Hc∼D/2A.Thislattice30hasbeenobservedinCr1/3NbS2.fromK̃=0.ThisisconfirmedbythesimulationsforathickForhigheranisotropy(thinnersamples),theDWareeithersample,Figure2c,d,(aswellasVideoS2)showingthechiralthermallygeneratedorpinnedbytheboundaries,andthepatternsimilartothatobservedinref4.DMI-induceddifferenceintheenergiesofDWofdifferentSmallkinkshavespinsnearlyalignedwiththefield,hencewindingissmallcomparedtothedomain-wallenergy.Then,theyhavelowerenergyandhigherdensityatmoderatefields,thefieldatthelateraledgesofthelamellaisessential,andtheasisclearfromsimulations(Figure2f:):thelightredregionsdescriptionofdipolarinteractionsasleadingtoaneffective(momentstiltedtowardthefield)aremostlyseparatedbyuniaxialanisotropyisinsufficient.Insimulations,atH=0webrightredregions(momentsalongthefield).Importantly,findwideregionsofspinstiltedslightlyawayfromtheplane,becausethedSGequationisnotexactlyintegrable,thesekinksseparatedbytheDWwithspinsnormaltothelamellaintheinteractastheyarenotexacteigenstatesofthesystematanyoppositedirection,seeFigure2e,g,h.Thetotalwinding31,34,35field.StudiesintheabsenceoftheDMIdemonstratednumberisdeterminedbytheboundaryconditions,andfortrappingofkink−antikinkpairsintolong-livedquasi-boundtopologicallytrivialboundariesDWappearmostlyinpairs34,3536statesequivalenttonontopologicalmagneticbions.addinguptow=0.Asequenceofredstripes(magneticExperimentalobservationofpairsofbrightanddarklinesinmomentspointingupateachoftheDW)inFigure2eLTEMpatternsunderamagneticfield,Figure1h,k,suggestsindicatesswitchingchiralitybetweensequentialdomains,seeFigure2g,h,anabsenceofnetwinding,andhencenon-thattheDMIinteractionmayhelpstabilizethesepairs.topologicalnatureofthemagneticorder.ThisshouldbeVanishingofthesignalathigherfields,oncethelinesapproachcontrastedwiththequasiperiodicred/bluepatterninFigure2aeachother,indicatesthattheseareobjectswithoppositecharacteristicofthechiralstate.windingnumbers,sothattheglobalstateisnontopological.WhenthefieldH

4NanoLetterspubs.acs.org/NanoLettLetterFigure4.SANSmeasurementofMn1/3NbS2at(a)3K,(b)17K,and(c)42Kwiththewavevector,Q,paralleltothe(001)reflectionalongthehorizontal.Thesignalat55K(paneld)wasconsideredasbackgroundandsubtractedfromthedatacollectedatlowertemperatures.Datawereobtainedwiththeincidentneutronbeamperpendiculartothec-axis.(e)Variationoftheintegratedintensity,I,obtainedfromtheareadesignatedbythewhitelinesinpanelsa−cversusQattheindicatedtemperatures.TheshadedregioncorrespondstotheQ-rangeexpectedfortheperiodicitiesfoundintheLorentzTEMstudies(seeFigure1).theDMinteraction,notaccountedforinthatanalysis,needstoatthesehigherH,wehesitatetorefertothisregionasfullybefullyelucidatedtheoretically.fieldpolarized.ToplacetheseimagesandcalculationsincontextandtoFurtherinsightintothemagneticstructurewasaccom-betterestablishthemagneticstateofthesystemfromwhichplishedthroughsmall-angleneutronscattering(SANS)thedomainstructuresimagedinFigure1derive,wehavemeasurements(Figure4).Thegeometryofthemeasurementmeasuredthemagneticpropertiesofbulksinglecrystalsaddinghasthecrystallographicc-axisnearlyhorizontalintheplaneofmoreunderstandingtopreviousresults.21,23,38Theseestab-thedetector,whiletheneutronbeamliesalongtheab-plane.lishedamagneticphasetransitiontoanearlyferromagneticForT32K.ThesedatashowninFigure3a,wherewehighlightadistinctchangeinarepresentedingraphicalforminFigure4e,wherethebehaviorbelow∼25K(phaseI).Theresponseofthissystemintensityafterintegrationbetweenazimuthalangles,χaz,lyingtomagneticfieldsasobservedinthemagnetization,M(H),andwithinthewhite,wedged-shapedregionsinFigure4a−cistheacsusceptibility,revealschangesnotcommonlyobservedplottedasafunctionofQandinFigureS7.Thevariationsweobservewithcoolingarelikelyrelatedtotheevolutionoftheinsimplemagnets.Forexample,M(H)withHorientedacsusceptibilitythatmotivatedthephasediagramofFigure3a.perpendiculartothec-axisisdisplayedinFigure3bwhereaThisscatteringstreaksignalsadisorderedmagneticstructurehysteresisisapparentforT<25KonlyfornonzeroH,consistingofeitherferromagneticdomainsoranonsinusoidalillustratedinFigure3abydottedlines.Themaximumhelicalmagneticstructure.Whetherthedisorderisintrinsictotemperaturewherethishysteresisisfound,T∼25K,21correspondswithdistinctchangesintheT-andH-dependentMn1/3NbS2,oraresultofMnsitedefects,orthepossiblepresenceofstackingfaultsalongthec-axisevidentinX-rayacsusceptibilityshowninFigure3c−f.Mostdramaticisthediffractionoflargercrystalsisnotyetknown.However,areductionintheimaginarypartoftheacsusceptibility,χ″,atallsimpledisorderedferromagneticstateisnotlikelysincetheHforT<25K(Figure3d,f).Thus,phaseIischaracterizedbywidthofmagneticscatteringalongthec-axiswouldresemblethehysteresisinHandthesmallχ″,correspondingwellwiththatfoundinthenuclearBraggscattering.ThecrystallographictheTandHregionwherelinesofcontrastwereobservedindisorderapparentinourpreviousneutrondiffractionmeasure-theFresnelimages.Theimplicationisthatthereisadistinct21mentsandoursingleandpowdercrystalX-raycharacter-changeinthemagneticdomainstructureanddynamicsattheizationisnotcompatiblewiththemosaicityrequiredbytheboundaryofphaseIwithphasesIIandIIIsincetherangeofHSANSdataforadisorderedferromagneticstate.Inaddition,spanningthepurportedphaseItypicallycorrespondstohighresolutionelectronmicrographsofourLTEMspecimensmesoscopic-sizedfeatures.Thisconclusionissupportedbythedisplayminimaldisorder,withnoindicationofstackingfaultsvariationofthefrequencydependenceofχ′andχ″asonthescaleoftheimages,andnoindicationofandisplayedinFigureS4.incommensurateorder(FigureS6).Instead,theSANSdataTheotherregionsofthephasediagramarecategorizedbyindicateanonperiodicstripephase,aconclusiondrivenbythetheresponseobservedinχ′andχ″includingforT>Tc,whereFresnelimageswhichdemonstratealackofstrictperiodicityasmallχ′andχ″areconsistentwithaparamagneticstate.Forresultinginasetofhelicalpitchlengthscorrespondingtothetemperaturesbetween24and45KandH<40mT(phaseIIshadedregioninFigure4e.ThisissupportedbyrecentSANSinFigure3a),theresponseischaracterizedbyahighlyH-measurementsofisostructuralCr1/3NbS2wheresmallsitedependentχ′andalargeχ″thatismaximumnearfieldswhendisorderresultsinhigherorderpeaks.WeconcludethattheM(H)approachessaturation.Finally,forH>40mTthe21Mnsitedisordercontributessignificantlytothewidthofsystemisnearlysaturated.However,sinceapeakinχ′persists39scatteringinFigure4.atthetransitionbetweenphaseIIIandthePMstate(T1)atHTheimportanceoftheDMIinthissystemismadeclearbywellabovetheapparentsaturation,andχ″continuestoevolvethepresenceofspintexturesthatarebothnonperiodicand1209https://dx.doi.org/10.1021/acs.nanolett.0c03199NanoLett.2021,21,1205−1212

5NanoLetterspubs.acs.org/NanoLettLetterthicknessdependent.Interestingly,magneticcontrastinHAADFSTEMimagesofMn1/3NbS2;wavevectorandFresnelimagesonlyappearsatT<25K

6NanoLetterspubs.acs.org/NanoLettLetteranalyticcalculations.AllauthorsparticipatedinthewritingofTyliszczak,T.;VanWaeyenberge,B.;Stoll,H.;Schütz,G.;Klaui,M.̈themanuscript.Correlationbetweenspinstructureoscillationsanddomainwallvelocities.Nat.Commun.2013,4,2328.Notes(13)Yamanouchi,M.;Chiba,D.;Matsukura,F.;Ohno,H.Current-Theauthorsdeclarenocompetingfinancialinterest.induceddomain-wallswitchinginaferromagneticsemiconductorstructure.Nature2004,428,539.■ACKNOWLEDGMENTS(14)Skumryev,V.;Stoyanov,S.;Zhang,Y.;Hadjipanayis,G.;TheexperimentalmaterialpresentedhereissupportedbytheGivord,D.;Nogues,J.Beatingthesuperparamagneticlimitwith́U.S.DepartmentofEnergyunderEPSCoRGrantDE-exchangebias.Nature2003,423,850−853.SC0012432withadditionalsupportfromtheLouisiana(15)Weller,D.;Moser,A.Thermaleffectlimitsinultrahigh-densityBoardofRegents.A.K.acknowledgessupportfortheFresnelmagneticrecording.IEEETrans.Magn.1999,35,4423−4439.(16)Braun,H.-B.ThermallyactivatedmagnetizationreversalinimaginginLTEMfromtheEU’sERCHorizon2020programelongatedferromagneticparticles.Phys.Rev.Lett.1993,71,3557.underGrantAgreement856538andfromDFGproject-ID(17)Moriya,T.;Miyadai,T.Evidenceforthehelicalspinstructure405553726−TRR270.TheSANSmeasurementsatORNL’sduetoantisymmetricexchangeinteractioninCr1/3NbS2.SolidStateHFIRwassponsoredbytheScientificUserFacilitiesDivision,Commun.1982,42,209−212.OfficeofScience,BasicEnergySciences(BES),U.S.(18)Kubetzka,A.;Pietzsch,O.;Bode,M.;Wiesendanger,R.Spin-DepartmentofEnergy(DOE).I.V.acknowledgessupportpolarizedscanningtunnelingmicroscopystudyof360°wallsinanfromNSFGrantDMR1410741fortheoreticalworkandexternalmagneticfield.Phys.Rev.B:Condens.MatterMater.Phys.hospitalityoftheKITP,wherepartofthisresearchwas2003,67,020401.performedunderNSFGrantPHY-1748958.Wewouldliketo(19)Benitez,M.J.;Hrabec,A.;Mihai,A.P.;Moore,T.A.;Burnell,thankDr.RonKelleyfromThermoFisherScientificforG.;McGrouther,D.;Marrows,C.H.;McVitie,S.MagneticprovidingaccessandassistancewiththeirPFIBforsamplemicroscopyandtopologicalstabilityofhomochiralNe′eldomainpreparationandTEMimaging.WethankDr.DongmeiCaoofwallsinaPt/Co/AlOxtrilayer.Nat.Commun.2015,6,8957.theSharedInstrumentFacilitiesatLouisianaStateUniversity(20)Tang,S.;Fishman,R.S.;Okamoto,S.;Yi,J.;Zou,Q.;Fu,M.;Li,A.-P.;Mandrus,D.;Gai,Z.TuningMagneticSolitonPhaseviaforassistancewithsamplepreparationfortheLTEMimaging.DimensionalConfinementinExfoliated2DCr1/3NbS2ThinFlakes.■NanoLett.2018,18,4023−4028.REFERENCES(21)Karna,S.K.;Womack,F.N.;Chapai,R.;Young,D.P.;(1)Jonietz,F.;Mühlbauer,S.;Pfleiderer,C.;Neubauer,A.;Münzer,Marshall,M.;Xie,W.;Graf,D.;Wu,Y.;Cao,H.;DeBeer-Schmitt,L.;W.;Bauer,A.;Adams,T.;Georgii,R.;Böni,P.;Duine,R.A.;Adams,P.W.;Jin,R.;DiTusa,J.F.ConsequencesofmagneticEverschor,K.;Garst,M.;Rosch,A.SpinTransferTorquesinMnSiatorderinginchiralMn1/3NbS2.Phys.Rev.B:Condens.MatterMater.UltralowCurrentDensities.Science2010,330,1648−1651.Phys.2019,100,184413.(2)Back,C.;Cros,V.;Ebert,H.;Everschor-Sitte,K.;Fert,A.;Garst,(22)Ghimire,N.J.;McGuire,M.A.;Parker,D.S.;Sipos,B.;Tang,M.;Ma,T.;Mankovsky,S.;Monchesky,T.L.;Mostovoy,M.;S.;Yan,J.-Q.;Sales,B.C.;Mandrus,D.MagneticphasetransitioninNagaosa,N.;Parkin,S.S.P.;Pfleiderer,C.;Reyren,N.;Rosch,A.;singlecrystalsofthechiralhelimagnetCr1/3NbS2.Phys.Rev.B:Taguchi,Y.;Tokura,Y.;vonBergmann,K.;Zang,J.The2020Condens.MatterMater.Phys.2013,87,104403.SkyrmionicsRoadmap.J.Phys.D:Appl.Phys.2020,53,363001.(23)Dai,Y.;Liu,W.;Wang,Y.;Fan,J.;Pi,L.;Zhang,L.;Zhang,Y.(3)Mühlbauer,S.;Binz,B.;Jonietz,F.;Pfleiderer,C.;Rosch,A.;CriticalphenomenonandphasediagramofMn-intercalatedlayeredNeubauer,A.;Georgii,R.;Böni,P.SkyrmionlatticeinachiralMnNb3S6.J.Phys.:Condens.Matter2019,31,195803.magnet.Science2009,323,915.(24)Grundy,P.J.;Tebble,R.S.Lorentzelectronmicroscopy.Adv.(4)Togawa,Y.;Koyama,T.;Takayanagi,K.;Mori,S.;Kousaka,Y.;Phys.1968,17,153.Akimitsu,J.;Nishihara,S.;Inoue,K.;Ovchinnikov,A.S.;Kishine,J.(25)Je,S.-G.;Kim,D.-H.;Yoo,S.-C.;Min,B.-C.;Lee,K.-J.;Choe,ChiralMagneticSolitonLatticeonaChiralHelimagnet.Phys.Rev.S.-B.Assymetricmagneticdomain-wallmotionbytheDzyaloshinskii-Lett.2012,108,107202.Moriyainteraction.Phys.Rev.B:Condens.MatterMater.Phys.2013,(5)Braun,H.-B.Topologicaleffectsinnanomagnetism:from88,214401.superparamagnetismtochiralquantumsolitons.Adv.Phys.2012,61,(26)Frank,F.C.;vanderMerwe,J.H.One-dimensional1−116.dislocations-III.Influenceofthesecondharmonicterminthe(6)Yu,X.Z.;Koshibae,W.;Tokunaga,Y.;Shibata,K.;Taguchi,Y.;potentialrepresentation,onthepropertiesofthemodel.ProceedingsNagaosa,N.;Tokura,Y.TransformationbetweenMeronandR.Soc.A1949,200,125−134.skyrmiontopologicalspintexturesinachiralmagnet.Nature2018,(27)Iwabuchi,S.Commensurate-IncommensuratePhaseTransition564,95−98.inDoubleSine-GordonSystem.Prog.Theor.Phys.1983,70,941−(7)Münzer,W.;Neubauer,A.;Adams,T.;Mühlbauer,S.;Franz,C.;Jonietz,F.;Georgii,R.;Böni,P.;Pedersen,B.;Schmidt,M.;Rosch,A.;953.Pfleiderer,C.Skyrmionlatticeinthedopedsemiconductor(28)Miyadai,T.;Kikuchi,K.;Kondo,H.;Sakka,S.;Arai,M.;Fe1−xCoxSi.Phys.Rev.B:Condens.MatterMater.Phys.2010,81,Ishikawa,Y.MagneticPropertiesofCr1/3NbS2.J.Phys.Soc.Jpn.1983,041203.52,1394−1401.(8)Tannous,C.;Comstock,R.L.SpringerHandbookofElectronic(29)Kishine,J.;Ovchinnikov,A.S.ChapterOne-TheoryofandPhotonicMaterials;Springer:Cham,Switzerland,2017.MonoaxialChiralHelimagnet.SolidStatePhys.2015,66,1−130.(9)Grollier,J.;Boulenc,P.;Cros,V.;Hamzic,A.;Vaures,A.;Fert,(30)Laliena,V.;Campo,J.;Kishine,J.;Ovchinnikov,A.S.;Togawa,A.;Faini,G.Switchingaspinvalvebackandforthbycurrent-inducedY.;Kousaka,Y.;Inoue,K.Incommensurate-commensuratetransitionsdomainwallmotion.Appl.Phys.Lett.2003,83,509.inthemonoaxialchiralhelimagnetdrivenbythemagneticfield.Phys.(10)Tsoi,M.;Fontana,R.;Parkin,S.MagneticdomainwallmotionRev.B:Condens.MatterMater.Phys.2016,93,134424.triggeredbyanelectriccurrent.Appl.Phys.Lett.2003,83,2617.(31)Condat,C.A.;Guyer,R.A.;Miller,M.D.Doublesine-Gordon(11)Myers,E.B.;Ralph,D.C.;Katine,J.A.;Louie,R.N.;Buhrman,chain.Phys.Rev.B:Condens.MatterMater.Phys.1983,27,474−494.(32)Maki,K.;Kumar,P.Magneticsolitonsinsuperfluid3He.Phys.R.A.Current-inducedswitchingofdomainsinmagneticmultilayerdevices.Science1999,285,867.Rev.B1976,14,118−127.(12)Bisig,A.;Stark,M.;Mawass,M.-A.;Moutafis,C.;Rhensius,J.;̈(33)Kitchenside,P.W.;Caudrey,P.J.;Bullough,R.K.SolitonlikeHeidler,J.;Büttner,F.;Noske,M.;Weigand,M.;Eisebitt,S.;spinwavesin3HeB.Phys.Scr.1979,20,673−680.1211https://dx.doi.org/10.1021/acs.nanolett.0c03199NanoLett.2021,21,1205−1212

7NanoLetterspubs.acs.org/NanoLettLetter(34)Campbell,D.K.;Schonfeld,J.F.;Wingate,C.A.Resonancestructureinkink-antikinkinteractionsinφ4theory.Phys.D1983,9,1−32.(35)Campbell,D.K.;Peyrard,M.;Sodano,P.Kink-Antikinkinteractionsinthedoublesine-gordonequation.Phys.D1986,19,165−205.(36)Kosevich,A.M.;Ivanov,B.A.;Kovalev,A.S.Magneticsolitons.Phys.Rep.1990,194,117.(37)Braun,H.-B.Fluctuationsandinstabilitiesofferromagneticdomain-wallpairsinanexternalmagneticfield.Phys.Rev.B:Condens.MatterMater.Phys.1994,50,16485.(38)Kousaka,Y.;Nakao,Y.;Kishine,J.;Akita,M.;Inoue,K.;Akimitsu,J.ChiralhelimagnetisminT1/3NbS2(T=CrandMn).Nucl.Instrum.MethodsPhys.Res.,Sect.A2009,600,250.(39)DeBeer-Schmitt,L.OakRidgeNationalLaboratory,OakRidge,TN.Personalcommunication,2020.(40)Mankovsky,S.;Polesya,S.;Ebert,H.;Bensch,W.Electronicandmagneticpropertiesof2H-NbS2intercalatedby3dtransitionmetals.Phys.Rev.B:Condens.MatterMater.Phys.2016,94,184430.1212https://dx.doi.org/10.1021/acs.nanolett.0c03199NanoLett.2021,21,1205−1212

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭