《Enantioselective E ff ects in the Electrical Excitation of Amine Single- Molecule Rotors - Balema et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleEnantioselectiveEffectsintheElectricalExcitationofAmineSingle-MoleculeRotorsTedrosA.Balema,YilangLiu,NatalieA.Wasio,AmandaM.Larson,DipnaA.Patel,PrashantDeshlahra,*andE.CharlesH.Sykes*CiteThis:J.Phys.Chem.C2021,125,3584−3589ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thispaperdescribesasingle-moleculestudyofN-methylbutylaminemolecularrotorssupportedonaCu(111)surface.Itisfirstdemonstratedthatthechiralityoftheindividualrotatingmoleculescanbedirectlydeterminedbyscanningtunnelingmicroscopy(STM)imagingandunderstoodwithdensityfunctionaltheory(DFT)simulations.TunnelingelectronsfromtheSTMtiparethenutilizedtoexcitevibrationalmodesofthemoleculethatdrivestherotationalmotion.ExperimentalactionspectrawereusedtodemonstratethattheelectricallyinducedrotationalmotionofN-methylbutylamineoccursabove360meV,whichcoincideswithC−Hstretchingvibrationalmodes.Themeasure-mentsalsorevealthat,abovethis360meVthreshold,theexcitationoccursviaaone-electronprocess.DFTcalculationsindicatedthattherotationbarrierisoveranorderofmagnitudesmaller,meaningthattherotorisexcitedviahigh-energyvibrationalmodesthatthencoupletothelowenergyrotationalmode.Furthermore,byadjustingtheelectronflux,individualrotationalmotionsbetweenthesixdifferentstableorientationsofthemoleculeontheCu(111)surfaceweremonitoredinrealtime.Itwasfoundthat,formostSTMtipsusedtoelectricallyexcitetherotors,therotationofoneenantiomerisfasterthantheother.ThisconfirmsanearlierreportthatSTMtipscanthemselvesbechiralandillustratesthefactthatdiastereomerismarisingfromachiralSTMtipinteractingwithachiralmoleculecanleadtosignificantphysicaldifferencesintherotationratesofRversusSmolecularrotors.Thisresulthasramificationsforinterpretingthedatafromexperimentswherenanoscaleelectricalcontactstochiralmoleculesaremadeindeviceslikebreakjunctionsandscanningprobeexperiments.■INTRODUCTIONthecurrentwork,combiningSTManddensityfunctionaltheory(DFT)calculationshasledtoadeeperunderstandingMolecularrotors,motors,andmachinesareofcurrentinterest,27−31,35,36ofthioether-basedsingle-moleculerotorsandmotors.andtherecentliteraturecontainsmanyreportsoforganicSpecifically,electricallyinduceddirectionalmotionisonlyDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at06:14:04(UTC).molecularstructuresandtheirfunctionalityinarangeofSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.chemically,thermally,orphoton-drivenprocesses.1−10Con-possiblewhentheadsorbedrotorischiralviaactivationofvibrationalmodesbytunnelingelectronsasopposedtosideringthatmolecularmachinesfoundinnatureoperateat11−21thermallyactivatedrotorsinwhichsecondlawthermody-interfaces,itisimportanttostudysurface-boundsystems.namicsdictatesthattheymustexhibitarandommo-However,factorssuchasfriction,thermalfluctuations,27−31,35,37tion.intramolecularbonding,andstericeffectshaveimposedThispaperdescribesasingle-moleculestudyofthevariouschallengesinunderstandingmanysurfacemolecular11,22rotationalmotionofchiralN-methylbutylaminerotorsmachines.Toaddressthesegapsinunderstanding,supportedonaCu(111)surface.Comparingtherelativescanningtunnelingmicroscopy(STM)offerstheuniquerotationalratesofthechiralN-methylbutylaminemolecularabilitytomakesingle-moleculemeasurementsofmolecularrotorsinducedbyinelastictunnelingelectrons,itwasobservedrotationonsurfacesandtointerrogatethedetailsofelectron-23−31inducedmolecularmotionatthenanoscale.Thankstothisapproach,therehavebeenimportantbreakthroughsinReceived:December1,2020studyingmolecularmachinessuchaselectricallydrivenRevised:January22,2021nanocars,32synchronizedmolecularmotornetworks,33andPublished:February5,202127,34single-moleculemotors.Whilestillfarfromapplication,molecularrotorsofferanidealtestbedfortheinvestigationofhowamolecularstructureaffectsdynamicalmotion.Relatedto©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c107673584J.Phys.Chem.C2021,125,3584−3589
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlethattherewasastrongenantioselectivecouplingbetweentheSTMtipandtheadsorbedchiralmoleculeleadingtolargedifferencesintheelectricallyexcitedrotationratesinRandSmolecularrotors.■EXPERIMENTALMETHODSLow-temperature(STM)LT-STMwasoperatedwithabasepressureof<1×10−11mbar.N-MethylbutylaminewasacquiredfromSigmaAldrichat95%purityandfurtherpurifiedbydegassingwithmultiplefreeze/pump/thawcycles.N-Methylbutylaminewasthenvapor-depositedontoaCu(111)sampleheldat5Kusingacollimatedmoleculardoserattachedtoaprecisionleakvalve.Annealsinthe80−120KrangewereperformedtoequilibratethemoleculesbyremovingthesamplefromthecryogenicallycooledstageofSTMandplacingitintoasampleholderheldatroomFigure1.(A)Schematicofsurface-adsorbedN-methylbutylamineontemperatureinanultrahighvacuum(UHV)chamberforaCu(111).TherotationalbehavioroftheaminerotoraroundtheN−Cu“axel”ishighlightedwithabluearrow.(B)Large-scale5KSTMpredeterminedtimeperiod.Thecrystalwasthencooledbackimageofsurface-adsorbedN-methylbutylamineonCu(111).Theto5KbyputtingitbackintotheSTMstageforhigh-greencirclesarerepresentativeexamplesoftheisolatedrotorresolutionimagingandspectracollection.EtchedWSTMtipsmoleculesusedinthestudy.Imagingconditions:10mV,90pA.wereusedinthisstudy.Scalebar:5nm.High-resolutionSTMimagesofaccompanyingtop-viewmodelsofthe(C)RenantiomerofanN-methylbutylamine■COMPUTATIONALDETAILSmoleculeadsorbedonCu(111)andthe(D)SenantiomerofanN-methylbutylaminemoleculeadsorbedonCu(111).Imagingcon-Periodicdensityfunctionaltheory(DFT)calculationswereditions:(C,D)20mV,200pA.Scalebars:0.5nm.performedwithintheViennaabinitiosimulationpackage(VASP)usingthePerdew−Burke−Ernzerhof(PBE)exchangetrateshowthemoleculecanrotatearoundtheN−Cubondcorrelationfunctionalbasedongeneralizedgradientapprox-38−41thatformstheaxelofthemolecularrotor.Figure1Bshowsaimation(GGA).Plane-wavebasissetsusedtoapprox-typicallargerSTMimagewithbothisolatedsinglemoleculesimatewavefunctionsofvalenceelectronswereexpandedtoaandsmallclusterspresent.Forthepurposeofthisstudyon400eVkineticenergycutoff.Theinteractionsofvalencesingle-moleculerotors,onlyisolatedmoleculesthatwereelectronswithatomcoresweredescribedbytheprojector-42severalnanometersfromanyneighboringmoleculeswereaugmentedwave(PAW)method.Electronicstructureswereexamined.Inthehigh-resolutionimagesinFigure1C,D,oneconvergedself-consistentlytoenergydifferenceslessthan1×−8canseefromtheindividualrotatingmoleculesthattheyare10eVbetweensuccessivesteps.Allsurfaceandbulkmetalmirrorimagesofoneanotherandhencechiral.Thiscalculationswereperformedwithoutspinpolarization.observationindicatesthat,whileenantiomersofN-methyl-TheCu(111)surfacewasrepresentedusingafour-layer4butylamineundergofastinterconversioninthegasphase,onCu×4CusupercellwithaboutsixlayersofvacuumspacetheCu(111)surface,bindingofthelonepairoftheNatomtobetweenneighboringslabsalongthe[111]direction.The45,463Cumeansthateachenantiomermaintainsitschirality.supercellsizesaredefinedtobe10.28×10.28×20.98ÅTofurthersupporttheseexperimentalfindings,DFTbasedonthePBE-optimizedCulatticeconstant(3.634Å).calculationsandSTMimagesimulationswereperformedtoThelowertwo-layerCuatomswerefixedatthebulkpositions,interrogatethebarriertorotationandtheappearanceoftheandtheuppertwo-layerCuatomswererelaxed.Thelong-moleculesintheSTMimages.DFT-derivedenergiesalongtherangeinteractionsamongneighboringslabsofCuwere43rotationalpathshowninFigure2Arevealthatthereisaverycorrectedusingdipolemomentsalongthe[111]direction.smallbarrier(14meV)fora60°rotationofthemoleculeAllcalculationswereperformedusinga2×2×1Monkhorst−44aroundtheN−CuaxeltothenextequivalentstableorientationPackk-pointmesh.TheinitialstructureofN-methylbutyl-ontheCu(111)surface.Thisexplainsthepseudo-hexagonalamineadsorbedontheCu(111)surfacewasoptimizeduntil−1shapeoftheindividualmoleculesintheSTMimagesthatforcesonatomswerelessthan0.02eVÅ.Rotationalbarriersoccurduetotimeaveragingofthesixequivalentstableandshapesofpotentialenergysurfacesfortherotationwereorientationsthatthemoleculerapidlyswitchesbetweenthederivedwithintherigid-rotorapproximationusingsingle-point29−31slowtimescaleofSTMimaging.Furthermore,theDFT-calculationsonimagesformedbyrotatinganoptimizedoptimizedstructuresenabledustomakeabsoluteassignmentsstructurefrom3to66°in3°intervals,withtheaxisofrotationofthechiralityofeachabsorbedmolecule.Specifically,FigureperpendiculartotheCu(111)surfaceandcenteredattheCu2BshowssimulatedSTMimagesoftheDFT-optimizedatomunderneaththeNatom.Therigid-rotorcalculationforstructuresinwhichthechiralityoftheadsorbedmoleculecantheintactrotoriscomparedtoanudgedelasticbandbedirectlyseenintheimage.TimeaveragesofthesecalculationintheSupportingInformation(FigureS4).projectionsoverthesixequivalentorientationsofthemoleculeonCu(111)yieldpinwheelshapesthatareinexcellent■RESULTSANDDISCUSSIONagreementwiththeSTMimagesoftherotatingmolecules.Figure1showsasummaryofSTMdataofN-methylbutyl-ThisallowsustousetheCahn−Ingold−PrelogrulesforaminedepositedonCu(111)at5Kandannealedto80KtoassigningchiralitytolabeleachisolatedmoleculeasRorS.equilibratethesystem.Figure1AshowsaschematicoftheTostudyelectricalexcitationofthesinglemolecules’molecularadsorptionsiteofN-methylbutylamineandillus-tunnelingcurrentversustime(Ivst),measurementswere3585https://dx.doi.org/10.1021/acs.jpcc.0c10767J.Phys.Chem.C2021,125,3584−3589
2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure2.(A)DFT-derivedenergiesasafunctionoftherotationanglefortheoptimizedN-methylbutylaminegeometrywiththeNatomatopaCuatom.Therotationofthismoleculeby60°wasenoughtocoverthewholerotationalpath.Thetop-viewschematicofN-methylbutylamineonCu(111)atdifferentanglesofrotationisshownbelowthegraph.(B)SimulatedSTMimageofanSenantiomerrotoroversixequivalentorientationsofthemoleculeonCu(111).ThebluespotindicatesthepositionoftheNatomcenter.AnSTMimageoftheSenantiomerisshownbelowforcomparison.SimulationSTMconditions:200mV,4.64Åtipposition.STMimagingconditions:20mV,200pA.Scalebar:0.5nm.Figure3.(A)Tunnelingcurrentasafunctionoftime(Ivst)tracesforN-methylbutylamineonCu(111)revealssixdiscretetunnelingcurrentvaluesthatcorrespondtothesixinequivalentorientationsofthemolecule(red,blue,green,purple,orange,andyellow)withrespecttothepositionoftheSTMtippositionasmarkedbytheblackcrosssymbol.Thelargerlobesintheschematicindicatethebutylgroupposition,whilethesmallerlobesindicatethemethylgrouppositionoftherotor.Excitationconditions:400mV,100pA.(B)ActionspectraforN-methylbutylamineonCu(111)atasettunnelingcurrentof10pAshowingasharpincreaseintherotationrateabovethe360mVthresholdvoltage,regardlessofthepositive/negativebias.(C)Plotofrotationratevstunnelingcurrentforvariousappliedvoltages.Thelinesarepowerlawfitstothedata;ngivestheelectronorder,i.e.,onevsmultipleelectron-inducedrotation.takeninwhichtheSTMtipispositionedofftothesideofoneequivalentorientationsofthealkyltail(asshownintheofthelobesofthepinwheelshapeoftherotatingmoleculeschematicinFigure3AwheretheSTMtippositionismarkedwiththefeedbackloopoffandthetunnelingcurrent(I)withan“X”).Thesesixtunnelingcurrentlevelsarisefromtherecordedovertime(t).AscanbeseeninFigure3A,thesepositionofthemolecularlobeswithrespecttotheSTMtip;tracesshow“long”periodswherethemoleculeisinonetheshorterthedistancebetweenthetipandrotor,thehigherorientation(i.e.,onetunnelingcurrentvalue)separatedbythetunnelingcurrent.Thesesingle-pointmeasurementsallow“fast”switchingbetweenthesixdifferentrotationalorienta-ustoquantifyrotationratesofsinglemolecules.Furthermore,tions.ThesesixtunnelingcurrentscorrespondtothesixbyrecordingtheseIversusttracesasafunctionofapplied3586https://dx.doi.org/10.1021/acs.jpcc.0c10767J.Phys.Chem.C2021,125,3584−3589
3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlevoltage,itenablesustoplotactionspectrathatrelatetherateenantiomer,asseeninFigure4A.Tofurtherdemonstrateofanaction(inthiscase,arotationratethatreferstoanythiseffect,westudiedsixenantiomersofthemoleculesisolatedmolecularrotationbetweenthesixequivalentorientations)totheenergyofthetunnelingelectrons(asdefinedbythevoltageacrossthetunneljunction).TheactionspectruminFigure3Bshowsasharpincreaseoftherotationratearound360mV,regardlessofthedirectionofelectronflow.Thisisacharacteristicofinelasticelectrontunnelingbywhichanelectronwithanenergyatorgreaterthanthemolecularvibrationmodequantaitcouplestocanleadtothemotionof47−49themoleculeasawhole.Todeterminewhethertheelectricalexcitationoftherotationalmotionisaone-ormulti-electronprocess,thetunnelingcurrent(I)dependenceoftherotationrate(k)was47studied,andtherotationrateisplottedasafunctionofthetunnelingcurrentnkI=inwhichnreferstothenumberofelectronsagivenprocess47involves.TheresultsinFigure3Cshowthat,atorbelow350mV,rotationalexcitationisamulti-electronprocessversusaone-electronprocessat400mV.This,inconjunctionwiththeactionspectroscopyresultsthatshowasharpincreaseinFigure4.Plotsofthe(A)tunnelingelectron-inducedrotationrateofrotationrateat∼360mV,indicatesthattheprimarypathwayRandSenantiomersofN-methylbutylaminewithdifferentSTMtips;forelectricalexcitationoftherotoroccursviaexcitationofC−theRrotorisrepresentedinred,andtheSrotorisrepresentedinHstretchmodesthatoccuratthisenergy.47,48Excitationoftheblue.(B)Rotationrateratios(RateR/RateS).Excitationconditions:400mV,100pA.Errorbarsreflectonestandarddeviation.N−HmodeofthemoleculecanberuledoutasN−Hstretchesinaminesthatoccurintherangeof3300−3500cm−1,whichwouldleadtoanonsetvoltageof410−430fromeachotherinthesameareaofthesurfacewiththesamemeV.50STMtipstate.Specifically,FigureS3demonstratesthattheWhencomparingtheenergyinput(360meVelectron)tointeractionoftheSTMtipwiththethreeSenantiomersleadsthebarriertorotationinwhichDFTputsat∼14meV,onecantoaslow(∼2Hz)rotationrateversusthesameSTMtipintheseethatthereisasignificantdifferenceinenergybetweenthesametipstateinteractingwiththeRenantiomers,whichleadsinputandoutputchannels.Thesebarrierestimatesandtoafaster(∼8Hz)rate.ThisdatadefinitivelydemonstratesrotationratesareinfluencedbyentropyeffectsandfinitethattheinteractionbetweentheSTMtipandthechiraltemperaturecorrections,20butsucheffectsarelesssignificantmoleculesisdifferentdependingiftheRorSenantiomerisatlowtemperatureandcannotaccountforamismatchofoverprobedandaclassicdiastereomericrelationshipisobserved.oneorderofmagnitude.Thismismatchbetweenhigh-energyGiventhattherotationalratedifferencesarephysicalvibrationalmodesthatdrivethelowenergyrotationalmotionpropertiesofthesystem,theSTMtipitselfmustbechiralto27,62hasbeenobservedinmolecularsystemsbeforeandarisesfrominducethisdiastereomerism.Toaidinthiscomparison,theC−Hvibrationalmodeshavingahighinelasticexcitationtheratiooftherotationalrates(RateR/RateS)fordifferentcrosssectionforexcitationfollowedbyenergytransferviaSTMtipsisshowninFigure4B.Statisticallysignificantratiosanharmoniccouplingofthesehigh-energyvibrationalmodestoabove1.0representSTMtipsthatarechiralandfavorlowerenergyrotationalandfrustratedtranslationalexcitationoftheRenantiomer,whileratiosbelow1.0representmodes.51−54ThisalsoindicatesthattherateofvibrationalSTMtipsthatfavorexcitationoftheSenantiomer.RatiosrelaxationviaenergytransfertotheCu(111)surfaceoccurscloserto1.00comefromSTMtipswithnomeasurableslowlyenoughtoallowtheIVRcouplingthatleadsthechiralityastherotationrateofbothenantiomersisequalrotationtooccur.54−59withinerror.Noevidenceforpreferentialrotationinonedirectionwasobserved,whichisconsistentwithsymmetricrotationbarriers■CONCLUSIONSintheDFTderivedenergiesinFigure2,andisincontrastwithAcombinedSTMandDFTstudyofanewmolecularrotorothersurface-adsorbedmoleculeswithasymmetrictorsionalsystemconsistingofindividualN-methylbutylaminemoleculesbarriersthatproducenetdirectionalityintheirrotationwhenboundtoaCu(111)surfaceisreported.Rotationaroundthe27,60,61electricallyexcitedbySTMtips.However,whenN−Cubondgivesincreasetothechiralpinwheelappearancemeasuringtheelectricallyinducedrotationratesofthetwoofindividualrotatingmolecules,andourcomplementaryDFTenantiomersofthemoleculeunderidenticalexcitationcalculationsenablethechiralityofeachindividualmolecularconditions(i.e.,sametunnelingvoltage,tunnelingcurrent,rotortobeassigned.Theresultspresentedindicatethattheandsampletemperature),statisticallysignificantdifferencesinrotationofthemoleculescanbedrivenbytunnelingelectronstherotationrateofthetwoenantiomersofthemoleculewerewithanenergyof360meVorgreaterinaone-electronobserved.BychangingtheSTMtipbetweenmeasurementsviaprocess.Importantly,significantdifferencesintherotationhighvoltagepulsesorsurfaceindentation,someSTMtipswereratesofRandSenantiomersofthemoleculewereobserved,observedtoinducefasterrotationoftheRenantiomeroftheanditwasfoundthatthesedifferenceschangeastheSTMtiprotor,whileothertipsinducefasterrotationoftheShaschanged.Theseresultshighlightthediastereomerism3587https://dx.doi.org/10.1021/acs.jpcc.0c10767J.Phys.Chem.C2021,125,3584−3589
4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle63arisingfromtheinteractionofachiralSTMtipandachiralresourcesfromXSEDE(AwardACI-1548562)forthetheorymolecule.Thefactthatratesdifferingby>100%wereobservedwork.betweenenantiomersindicatethatcaremustbetakenwheninterpretingresultsfromsystemsthatinvolveelectrical■REFERENCEScontactstosinglemoleculeslikebreakjunctionsandscanning(1)Kelly,T.R.;Bowyer,M.C.;Bhaskar,K.V.;Bebbington,D.;probeexperimentsasunforeseenchiralityofthemetalGarcia,A.;Lang,F.;Kim,M.H.;Jette,M.P.AMolecularBrake.J.electrode(inthiscase,theSTMtip)mayleadtolargeAm.Chem.Soc.1994,116,3657−3658.differencesinratesofinducedmotioninthedifferent(2)Baroncini,M.;Silvi,S.;Venturi,M.;Credi,A.Photoactivatedenantiomersofthemolecule.Furthermore,inthefuture,itDirectionallyControlledTransitofaNon-SymmetricMolecularAxlewouldbeinterestingtostudyhowdifferentSTMtipetchingsthroughaMacrocycle.Angew.Chem.,Int.Ed.2012,51,4223−4226.orcuttingproceduresaffectthechiralityoftheSTMtipas(3)Li,H.;Cheng,C.;McGonigal,P.R.;Fahrenbach,A.C.;measuredbydifferencesinrotationratesbetweenenantiomersFrasconi,M.;Liu,W.G.;Zhu,Z.;Zhao,Y.;Ke,C.;Lei,J.;etal.andeventheuseofchiraletchantsolutionsthatmayyieldtipsRelativeUnidirectionalTranslationinanArtificialMolecularofonechirality.However,giventheserialnatureofAssemblyFueledbyLight.J.Am.Chem.Soc.2013,135,18609−experiments,andtheslowturnaroundtimefor5Kimaging18620.experiments,thiswouldtakeyearsofworktoproduce(4)Kassem,S.;Lee,A.T.L.;Leigh,D.A.;Markevicius,A.;Sola,J.̀Pick-up,TransportandReleaseofaMolecularCargoUsingaSmall-statisticallysignificantdata.MoleculeRoboticArm.Nat.Chem.2016,8,138−143.■(5)Astumian,R.D.ChemicalPeristalsis.Proc.Natl.Acad.Sci.2005,ASSOCIATEDCONTENT102,1843−1847.*sıSupportingInformation(6)Kay,E.R.;Leigh,D.A.;Zerbetto,F.SyntheticMolecularMotorsTheSupportingInformationisavailablefreeofchargeatandMechanicalMachines.Angew.Chem.,Int.Ed.2007,46,72−191.https://pubs.acs.org/doi/10.1021/acs.jpcc.0c10767.(7)Hernandez,J.V.;Kay,E.R.;Leigh,D.A.AReversibleSynthetićRotaryMolecularMotor.Science2004,306,1532−1537.DFTcalculationsoftherotationalbarrier,simulated(8)Su,X.;Voskian,S.;Hughes,R.P.;Aprahamian,I.ManipulatingSTMimagesforN-methylbutylamineonCu(111),andLiquid-CrystalPropertiesUsingaPHActivatedHydrazoneSwitch.controlexperimentsforexcitationofpairsofenan-Angew.Chem.,Int.Ed.2013,52,10734−10739.tiomers(PDF)(9)Su,X.;Aprahamian,I.SwitchingaroundTwoAxles:ControllingtheConfigurationandConformationofaHydrazone-BasedSwitch.■Org.Lett.2011,13,30−33.AUTHORINFORMATION(10)Astumian,R.D.RunningonInformation.Nat.Nanotechnol.CorrespondingAuthors2016,11,582−583.PrashantDeshlahra−DepartmentofChemicalandBiological(11)Kottas,G.S.;Clarke,L.I.;Horinek,D.;Michl,J.ArtificialEngineering,TuftsUniversity,Medford,MassachusettsMolecularRotors.Chem.Rev.2005,105,1281−1376.02155,UnitedStates;orcid.org/0000-0002-1063-4379;(12)Wintjes,N.;Bonifazi,D.;Cheng,F.;Kiebele,A.;Stöhr,M.;Email:prashant.deshlahra@tufts.eduJung,T.;Spillmann,H.;Diederich,F.ASupramolecularMultipositionE.CharlesH.Sykes−DepartmentofChemistry,TuftsRotaryDevice.Angew.Chem.,Int.Ed.2007,46,4089−4092.University,Medford,Massachusetts02155,UnitedStates;(13)Huan,J.;Zhang,X.;Zeng,Q.Two-DimensionalSupra-orcid.org/0000-0002-0224-2084;Email:charles.sykes@molecularCrystalEngineering:ChiralityManipulation.Phys.Chem.Chem.Phys.2019,21,11537−11553.tufts.edu(14)Lischka,M.;Fritton,M.;Eichhorn,J.;Vyas,V.S.;Strunskus,AuthorsT.;Lotsch,B.V.;Björk,J.;Heckl,W.M.;Lackinger,M.On-SurfaceTedrosA.Balema−DepartmentofChemistry,TuftsPolymerizationof1,6-Dibromo-3,8-DiiodpyreneAComparativeStudyonAu(111)VersusAg(111)bySTM,XPS,andNEXAFS.J.University,Medford,Massachusetts02155,UnitedStatesPhys.Chem.C2018,122,5967−5977.YilangLiu−DepartmentofChemicalandBiological(15)Zheng,X.;Mulcahy,M.E.;Horinek,D.;Galeotti,F.;Magnera,Engineering,TuftsUniversity,Medford,MassachusettsT.F.;Michl,J.DipolarandNonpolarAltitudinalMolecularRotors02155,UnitedStatesMountedonanAu(111)Surface.J.Am.Chem.Soc.2004,126,4540−NatalieA.Wasio−DepartmentofChemistry,Tufts4542.University,Medford,Massachusetts02155,UnitedStates(16)Horinek,D.;Michl,J.Surface-MountedAltitudinalMolecularAmandaM.Larson−DepartmentofChemistry,TuftsRotorsinAlternatingElectricField:Single-MoleculeParametricUniversity,Medford,Massachusetts02155,UnitedStates;OscillatorMolecularDynamics.Proc.Natl.Acad.Sci.2005,102,orcid.org/0000-0002-0319-732614175−14180.DipnaA.Patel−DepartmentofChemistry,TuftsUniversity,(17)Greber,T.;Šljivancanin,Ž̌.;Schillinger,R.;Wider,J.;Hammer,Medford,Massachusetts02155,UnitedStatesB.ChiralRecognitionofOrganicMoleculesbyAtomicKinksonSurfaces.Phys.Rev.Lett.2006,96,No.056103.Completecontactinformationisavailableat:(18)Karageorgaki,C.;Mutombo,P.;Jelinek,P.;Ernst,K.-H.Chiralhttps://pubs.acs.org/10.1021/acs.jpcc.0c10767SurfacefromAchiralIngredients:ModificationofCu(110)withPhthalicAcid.J.Phys.Chem.C2019,123,9121−9127.Notes(19)Böhringer,M.;Morgenstern,K.;Schneider,W.-D.;Berndt,R.Theauthorsdeclarenocompetingfinancialinterest.SeparationofaRacemicMixtureofTwo-DimensionalMolecularClustersbyScanningTunnelingMicroscopy.Angew.Chem.,Int.Ed.■1999,38,821−823.ACKNOWLEDGMENTS(20)Zhong,D.;Blömker,T.;Wedeking,K.;Chi,L.;Erker,G.;TheauthorsthanktheU.S.NationalScienceFoundationFuchs,H.Surface-MountedMolecularRotorswithVariableFunc-(GrantCHE-1708397)forsupportoftheexperimentalwork.tionalGroupsandRotationRadii.NanoLett.2009,9,4387−4391.Y.L.andP.D.acknowledgethesupportfromtheNational(21)Gehrig,J.C.;Penedo,M.;Parschau,M.;Schwenk,J.;Marioni,ScienceFoundation(Award1803798)andcomputationalM.A.;Hudson,E.W.;Hug,H.J.SurfaceSingle-MoleculeDynamics3588https://dx.doi.org/10.1021/acs.jpcc.0c10767J.Phys.Chem.C2021,125,3584−3589
5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleControlledbyEntropyatLowTemperatures.Nat.Commun.2017,8,(42)Kresse,G.;Joubert,D.FromUltrasoftPseudopotentialstothe14404.ProjectorAugmented-WaveMethod.Phys.Rev.B1999,59,1758−(22)Lewis,E.A.;Murphy,C.J.;Liriano,M.L.;Sykes,E.C.H.1775.Atomic-ScaleInsightintotheFormation,MobilityandReactionof(43)Makov,G.;Payne,M.C.PeriodicBoundaryConditionsinAbUllmannCouplingIntermediates.Chem.Commun.2014,50,1006−InitioCalculations.Phys.Rev.B1995,51,4014−4022.1008.(44)Hendrik,J.Monkhorst.SpecialPointsFroBrillouin-Zone(23)Hersam,M.C.;Guisinger,N.P.;Lyding,J.W.Isolating,Integretions.Phys.Rev.B1976,13,5188−5192.Imaging,andElectricallyCharacterizingIndividualOrganicMolecules(45)Lehn,J.M.NitrogenInversion.InDynamicStereochemistry;ontheSi(100)SurfacewiththeScanningTunnelingMicroscope.J.Springer-Verlag:Berlin/Heidelberg,1970;pp.311−377,Vac.Sci.Technol.,A2000,18,1349−1353.DOI:10.1007/BFb0050820.(24)Stöhr,M.;Wagner,T.;Gabriel,M.;Weyers,B.;Möller,R.(46)Greenwood,N.N.;Earnshaw,A.ChemistryoftheElements,2ndDirectObservationofHinderedEccentricRotationofanIndividualed.;ElsevierScience:1997.Molecule:Cu-PhthalocyanineonC60.Phys.Rev.B2001,65,(47)Stipe,B.C.;Rezaei,M.A.;Ho,W.Single-MoleculeVibrationalSpectroscopyandMicroscopy.Science1998,280,1732−1735.No.033404.(48)Lauhon,L.J.;Ho,W.ControlandCharacterizationofa(25)Ye,T.;Takami,T.;Wang,R.;Jiang,J.;Weiss,P.S.TuningMultistepUnimolecularReaction.Phys.Rev.Lett.2000,84,1527−InteractionsbetweenLigandsinSelf-AssembledDouble-Decker1530.PhthalocyanineArrays.J.Am.Chem.Soc.2006,128,10984−10985.(49)Sainoo,Y.;Kim,Y.;Komeda,T.;Kawai,M.InelasticTunneling(26)Wahl,M.;Stöhr,M.;Spillmann,H.;Jung,T.A.;Gade,L.H.SpectroscopyUsingScanningTunnelingMicroscopyonTrans-2-Rotation−LibrationinaHierarchicSupramolecularRotor−StatorButeneMolecule:SpectroscopyandMappingofVibrationalFeature.System:ArrheniusActivationandRetardationbyLocalInteraction.J.Chem.Phys.2004,120,7249−7251.Chem.Commun.2007,2,1349−1351.(50)Stewart,J.E.VibrationalSpectraofPrimaryandSecondary(27)Tierney,H.L.;Murphy,C.J.;Jewell,A.D.;Baber,A.E.;Iski,E.AliphaticAmines.J.Chem.Phys.1959,30,1259−1265.V.;Khodaverdian,H.Y.;McGuire,A.F.;Klebanov,N.;Sykes,E.C.(51)Komeda,T.;Kim,Y.;Kawai,M.;Persson,B.N.;Ueba,H.H.ExperimentalDemonstrationofaSingle-MoleculeElectricMotor.LateralHoppingofMoleculesInducedbyExcitationofInternalNat.Nanotechnol.2011,6,625−629.VibrationMode.Science2002,295,2055−2058.(28)Baber,A.E.;Tierney,H.L.;Sykes,E.C.H.AQuantitative(52)Ohara,M.;Kim,Y.;Yanagisawa,S.;Morikawa,Y.;Kawai,M.Single-MoleculeStudyofThioetherMolecularRotors.ACSNanoRoleofMolecularOrbitalsneartheFermiLevelintheExcitationof2008,2,2385−2391.VibrationalModesofaSingleMoleculeataScanningTunneling(29)Jewell,A.D.;Tierney,H.L.;Baber,A.E.;Iski,E.V.;Laha,M.MicroscopeJunction.Phys.Rev.Lett.2008,100,1−4.M.;Sykes,E.C.H.Time-ResolvedStudiesofIndividualMolecular(53)Pascual,J.I.;Lorente,N.;Song,Z.;Conrad,H.;Rust,H.-P.Rotors.J.Phys.Condens.Matter2010,22,264006.SelectivityinVibrationallyMediatedSingle-MoleculeChemistry.(30)Tierney,H.L.;Han,J.W.;Jewell,A.D.;Iski,E.V.;Baber,A.Nature2003,423,525−528.E.;Sholl,D.S.;Sykes,E.C.H.ChiralityandRotationofAsymmetric(54)Stipe,B.C.;Rezaei,M.A.;Ho,W.CouplingofVibrationalSurface-BoundThioethers.J.Phys.Chem.C2010,115,897−901.ExcitationtotheRotationalMotionofaSingleAdsorbedMolecule.(31)Tierney,H.L.;Baber,A.E.;Jewell,A.D.;Iski,E.V.;Boucher,Phys.Rev.Lett.1998,81,1263−1266.M.B.;Sykes,E.C.H.Mode-SelectiveElectricalExcitationofa(55)Sainoo,Y.;Kim,Y.;Okawa,T.;Komeda,T.;Shigekawa,H.;MolecularRotor.Chem.−Eur.J.2009,15,9678−9680.Kawai,M.ExcitationofMolecularVibrationalModeswithInelastic(32)Kudernac,T.;Ruangsupapichat,N.;Parschau,M.;Macia,B.;́ScanningTunnelingMicroscopyProcesses:ExaminationthroughKatsonis,N.;Harutyunyan,S.R.;Ernst,K.-H.;Feringa,B.L.ActionSpectraofCis-2-ButeneonPd(110).Phys.Rev.Lett.2005,95,ElectricallyDrivenDirectionalMotionofaFour-WheeledMolecule1−4.onaMetalSurface.Nature2011,479,208−211.(56)Parschau,M.;Passerone,D.;Rieder,K.-H.;Hug,H.J.;Ernst,(33)Zhang,Y.;Kersell,H.;Stefak,R.;Echeverria,J.;Iancu,V.;K.-H.SwitchingtheChiralityofSingleAdsorbateComplexes.Angew.Perera,U.G.E.;Li,Y.;Deshpande,A.;Braun,K.F.;Joachim,C.;Chem.,Int.Ed.2009,48,4065−4068.etal.SimultaneousandCoordinatedRotationalSwitchingofAll(57)Violeta,S.M.;Meyer,J.;Morgenstern,K.ChiralityChangeofMolecularRotorsinaNetwork.Nat.Nanotechnol.2016,11,706−ChloronitrobenzeneonAu(111)InducedbyInelasticElectron712.Tunneling.Angew.Chem.,Int.Ed.2009,48,4061−4064.(34)Seldenthuis,J.S.;Prins,F.;Thijssen,J.M.;vanderZant,H.S.(58)Stipe,B.C.;Rezaei,M.A.;Ho,W.InducingandViewingtheJ.AnAll-ElectricSingle-MoleculeMotor.ACSNano2010,4,6681−RotationalMotionofaSingleMolecule.Science1998,279,1907−6686.1909.(35)Neumann,J.;Gottschalk,K.E.;Astumian,R.D.Drivingand(59)Sainoo,Y.;Kim,Y.;Komeda,T.;Kawai,M.;Shigekawa,H.ControllingMolecularSurfaceRotorswithaTerahertzElectricField.ObservationofCis-2-ButeneMoleculeonPd(110)byCryogenicACSNano2012,6,5242−5248.STM:SiteDeterminationUsingTunneling-Current-InducedRota-(36)Jewell,A.D.;Tierney,H.L.;Zenasni,O.;Lee,T.R.;Sykes,E.tion.Surf.Sci.2003,536,L403−L407.C.H.AsymmetricThioethersasBuildingBlocksforChiral(60)Ernst,K.-H.ATurnintheRightDirection.Nat.Nanotechnol.Monolayers.Top.Catal.2011,54,1357−1367.2013,8,7−8.(37)Astumian,R.D.TrajectoryandCycle-BasedThermodynamics(61)Zhang,Y.;Calupitan,J.P.;Rojas,T.;Tumbleson,R.;Erbland,G.;Kammerer,C.;Ajayi,T.M.;Wang,S.;Curtiss,L.A.;Ngo,A.T.;andKineticsofMolecularMachines:TheImportanceofMicroscopicUlloa,S.E.;Rapenne,G.;Hla,S.W.AChiralMolecularPropellerReversibility.Acc.Chem.Res.2018,2653.DesignedforUnidirectionalRotationsonaSurface.Nat.Commun.(38)Kresse,G.;Hafner,J.AbInitioMolecularDynamcisforLiquid2019,10,3742.Metals.Phys.Rev.B1993,47,558.(62)Tierney,H.L.;Murphy,C.J.;Sykes,E.C.H.RegularScanning(39)Kresse,G.;Furthmüller,J.EfficiencyofAb-InitioTotalEnergyTunnelingMicroscopeTipsCanBeIntrinsicallyChiral.Phys.Rev.CalculationsforMetalsandSemiconductorsUsingaPlane-WaveLett.2011,106,No.010801.BasisSet.Comput.Mater.Sci.1996,6,15−50.(63)Towns,J.;Cockerill,T.;Dahan,M.;Foster,I.;Gaither,K.;(40)Kresse,G.;Furthmüller,J.EfficientIterativeSchemesforAbGrimshaw,A.;Hazlewood,V.;Lathrop,S.;Lifka,D.;Peterson,G.D.;InitioTotal-EnergyCalculationsUsingaPlane-WaveBasisSet.Phys.etal.XSEDE:AcceleratingScientificDiscovery.Comput.Sci.Eng.Rev.B1996,54,11169−11186.2014,16,62−74.(41)Perdew,J.P.;Burke,K.;Ernzerhof,M.GeneralizedGradientApproximationMadeSimple.Phys.Rev.Lett.1996,77,3865−3868.3589https://dx.doi.org/10.1021/acs.jpcc.0c10767J.Phys.Chem.C2021,125,3584−3589
此文档下载收益归作者所有