《Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO 3 Crystals - Hsieh et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleFacet-DependentandAdjacentFacet-RelatedElectricalConductivityPropertiesofSrTiO3CrystalsPei-LunHsieh,MaheshMadasu,Chien-HsuanHsiao,Yun-WenPeng,Lih-JuannChen,*andMichaelH.Huang*CiteThis:J.Phys.Chem.C2021,125,10051−10056ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Electricalconductivitymeasurementsshowthatthe{100}facesofaperfectSrTiO3cubeareinsulating,butthe{110}facesofaSrTiO3truncatedrhombicdodecahedronareconsiderablymoreconductive.Interestingly,comparedtoelectrodestouchingtheproximal{110}faces,adjacent{110}facecontactsgivenotablyhighercurrent.Unexpectedly,whilethe{110}facesofatruncatedrhombicdodecahedronremainmuchmoreconductivethanits{100}faces,theadjacentconductive{110}facetsmaycausethepoorlyconductive{100}facetstobecomemoreconductivethroughslightcurrentleakagetotheadjacentconductivefaces.Consistentwithpreviousinsulatingbehaviorobservedfora{110}-boundCu2Orhombicdodecahedron,the{110}facesofaCu2Orhombicuboctahedralmicrocrystalremaininsulating.Thus,theinfluenceofadjacentconductivefacetmaybeavoidedusingsharperelectrodes.Still,theadjacentfaceteffectmayalwaysbepresentevenwiththeuseofsharpelectrodes.Current-rectifyingasymmetricI−Vcurveswererecordedwithelectrodescontactingthe{100}and{110}facesofaSrTiO3truncatedrhombicdodecahedron.Theelectricalfaceteffectscanbeunderstoodwithdifferentdegreesofbandbendingatthesecrystalsurfacesandthusdifferentbarrierheightstochargecarriertransportacrossthesesurfaces.Finally,high-resolutiontransmissionelectronmicroscopy(HR-TEM)imagesoverthesurfacesofSrTiO3truncatedrhombicdodecahedraandcubesweretaken,showingnotableshiftsinatomicpositionswithinthefewlayersofsurfacelatticeplanesrelativetotheatomicpositionsoftheinteriorlattice,suggestingthatthelatticedeviationswithinthethinsurfacelayeraspredictedbydensityfunctionaltheory(DFT)calculationsmaybevisuallyobservable.17−19■INTRODUCTIONpropertiesofsemiconductorcrystals.Althoughseveralexamplesofsemiconductorspossessingstronglyfacet-depend-Semiconductorcrystalsgenerallypossessfacet-dependententconductivitypropertieshavebeendemonstrated,someelectricalconductivityproperties,asrevealedbyconductivityunexpectedphenomenacanstillemergeinothermaterials,asmeasurementsonsinglepolyhedralCu2O,Ag2O,TiO2,PbS,1−7seeninthediverseinterfacialplane-relatedphotocatalyticandAg3PO4crystals.Moreover,intrinsicSi,Ge,andGaAs188−10outcomesofsemiconductorheterostructures.Previously,wafersalsoexhibitelectricalfaceteffects.DFTcalculationsDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at08:05:27(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.haverevealedthatthesemiconductorfaceteffectsshouldsize-tunablestrontiumtitanate(SrTiO3)cubesand{100}face-truncatedrhombicdodecahedrawithaperovskitecrystaloriginatefromthepresenceofanultrathinsurfacelayerwith20dissimilarbandstructuresfordifferentcrystalfaces.2,11−13DFTstructurehavebeensynthesized.SrTiO3hasanindirectband21,22gapof3.25eVandadirectbandgapof3.75eV.Itshouldcalculationsfurthersuggestthatsubtlevariationsinbondbeinterestingtocheckthepresenceofelectricalfaceteffectsinlength,bondgeometry,andfrontierorbitalelectronenergythesecrystals.distributionarepresentbetweenmetal-likeandsemiconduct-11−13Inthisstudy,electricalconductivitymeasurementsonaingsurfaceplanesofSi,Ge,andGaAs.Thus,slightsingleSrTiO3cubeandtruncatedrhombicdodecahedronwerevariationsatthebondandorbitallevelscontributetochangesperformed.Inadditiontotheobservationofelectricalfacetinthebandstructureofthesurfacelayer,whichproducestheeffects,unexpectedadjacentfacet-relatedconductivitybehaviorobservedfacet-dependentelectricalconductivitybehaviorsofsemiconductors.Morerecently,electrochemicalimpedancemeasurementsonSi,Ge,andGaAswafershaverevealedthatReceived:February4,2021thepresenceofdeeptrapstateslocatedwithinthebandgapsisRevised:March22,2021linkedtotheirfacet-dependentelectricalconductivityproper-Published:April28,202114−16ties.Theideaoftheultrathinsurfacelayerwithfacet-specificbandstructurescanalsoexplaintheobservationsoffaceteffectsinthephotocatalyticactivitiesandoptical©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpcc.1c0104710051J.Phys.Chem.C2021,125,10051−10056
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.I−Vcurvesrecordedwithtungstenprobescontacting(a){100}facesofaSrTiO3cube,(b)proximal{110},(c)adjacent{110},(d)proximal{100},and(e)opposite{100}facesofsingleSrTiO3truncatedrhombicdodecahedron.(f)SummaryoftheI−Vcurvesobtainedfromtruncatedrhombicdodecahedra.wasrecordedwhenmeasuringthe{100}faceconductivityofa■RESULTSANDDISCUSSIONtruncatedrhombicdodecahedron.ToassistunderstandingofThesynthesizedSrTiO3cubicandtruncatedrhombicthisconductivityfeature,conductivitymeasurementsonadodecahedralparticleswereloadedinsideaSEMchambersingleCu2OrhombicuboctahedronwerecarriedoutforforelectricalconnectionandconductivitymeasurementscomparisontopreviousconductivityresultsonaCu2Ocube,throughthefabricatedtungstenprobes.Thetwotungsten2octahedron,andrhombicdodecahedron.ModifiedbandprobeswerebroughttotoucheachotheruntilalinearI−VdiagramsarepresentedtoexplaintheobservedelectricalcurvewasobtainedtoensuremetalliccontactwithoutanyfaceteffectsofSrTiO3crystals.HR-TEMimagesofthesurfacesurfaceoxideformation.ThesametestwasperformedbeforeofSrTiO3truncatedrhombicdodecahedraandcubeswerealsomeasuringanotherparticle.Eachtruncatedrhombicdodeca-takentocheckpossibleatomicpositionshiftsforthefirstfewhedronhas12{110}facesand6square{100}faces.Figure1layersofsurfaceatomsaspredictedbyDFTcalculations.showsSEMimagesandschematicdrawingsofthetungstenprobesmakingcontactstoasingleSrTiO3cubeandthe{100}■and{110}facesofaSrTiO3truncatedrhombicdodecahedron,EXPERIMENTALSECTIONaswellastherecordedI−Vcurves.AdditionalI−VcurvesareSynthesisofSrTiO3Crystals.SynthesisconditionsforprovidedinFigureS2.ThecubeisnotconductivewithzeroSrTiO3cubesandtruncatedrhombicdodecahedraarecurrentuntilabout15V.Atinycurrentoflessthan2nAwasprovidedinFigureS1intheSupportingInformation.Briefly,recordedat20V.Thismeansthe{100}facesofSrTiO3areTiCl4andSrCl2·6H2Owerefirstaddedtoawater−ethanolpracticallyinsulating,whichisdesirableforfacet-controlledsolutioninavialformakingcubes(orTiCl4inamixtureoffield-effecttransistor(FET)fabrication.The{110}facesofwater,hexanol,andethyleneglycolforgrowingtruncatedSrTiO3aremuchmoreconductive,despitetheinitiallowrhombicdodecahedra).Thevialwasplacedinanicebath,andcurrentseenbelow2V.Currentreachesaround300nAat6V.thesolutionwasstirredfor5min,followedbytheadditionofFigure1bshowsthattheprobesmadecontactstotwo{110}LiOH.Afterstirringthesolutionfor30minintheicebath,thefacesseparatedbyanother{110}facetolimitparticlevialwasplacedinanautoclavepartiallyfilledwithwaterandmovementandenablegoodviewingofthecrystals.Interestingly,whentheprobeswerebroughttocontactheatedat70°Cfor3hformakingcubesand200°Cfor20hadjacent{110}faces,muchlargercurrentreachingbeyondforgrowingtruncatedrhombicdodecahedra.1000nAat6Vhasbeenmeasured(Figure1c).ThisimpliesElectricalConductivityMeasurements.Thesharpenedthatshorteningtheprobedistancebetweentwoconductivetungstenprobeswereattachedtoananomanipulatorfacescangreatlyincreaseconductivity.Twopossibleprobe(Kammrath&WiessGmbH),whichwaslinkedtoacontactdirectionstothe{100}facesofatruncatedrhombicSourceMeter(Keithleymodel2636B).Thenanomanipulatordodecahedronhavebeenmade(Figure1d,e),inwhichthewasinstalledinsideaJEOL7000Fscanningelectronprobesaretouchingeitheropposite{100}facesoradjacentmicroscope.Beforesamplemeasurements,tungstenprobes{100}facesofthetruncatedrhombicdodecahedron.Sincethewerebroughttocontacteachother.Asmallcurrentwasadjacent{100}facesareseparatedbya{110}face,wecancallapplieduntilalinearI−Vcurvewasobtained,indicatingsuchelectricalcontactasproximalfacecontact.Theoppositeformationofametalliccontactwithoutanysurfaceoxidelayer.{100}facecontactcanbeconsideredasdistalfacecontact.InCrystalswereloadedinsidetheSEMchamberforconductivitybothcases,thereisbarelyanycurrentbelow3V,butcurrentmeasurementsunderavacuumpressureof9×10−5Torr.risestoabout25−40nAat6V.Thus,whilethe{100}facesof10052https://doi.org/10.1021/acs.jpcc.1c01047J.Phys.Chem.C2021,125,10051−10056
2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlethetruncatedrhombicdodecahedraremainmuchless{100}faceandexitingfromthe{110}face)below4Vandaconductivethanthe{110}faces,theyarestillconsiderablyhighcurrentofabout225nAat4Vandaround850nAat6Vmoreconductivethanthe{100}facesofaperfectSrTiO3intheoppositecurrentdirectionof{110}to{100}.Thislargecube.Thisisanunexpectedresult.Figure1fsummariesthecurrentrectificationeffectresemblesthatofelectricalresponsecollectedI−Vcurves,showingthatthereisalargeconductivityofp−njunctions,suggestingthepotentialofusingthedifferencebetweenthe{100}and{110}facesofaSrTiO3electricalfaceteffectofsemiconductorsfornovelFETdesign.truncatedrhombicdodecahedron.ThisisanotherexampleofFigure4givesthebanddiagramstoillustratetheelectricalstronglyfacet-dependentelectricalconductivitypropertiesofconductivityfaceteffect.Withcurrententeringthecrystalfrommanysemiconductormaterials.Figure2givesamodifiedbanddiagramofSrTiO3toexplaintheobservedelectricalconductivityfaceteffect.TheFermiFigure2.AdjustedbanddiagramofSrTiO3showingdifferentdegreesoffacetbandbendingatthecrystalsurface.Tungstenisthecontactingmetal.qΦmismetalworkfunction,qΦsissemiconductorworkfunction,qXissemiconductorelectronaffinity,Evisvalencebandenergy,Ecisconductionbandenergy,andEfisFermilevel.TheFermilevelisdrawntohavethesameenergyasthatoftungstentoindicateanequilibriumconditionbeforeabiasvoltageisapplied.levelisdrawntoequalizethatoftungstenuponelectricalcontact.Atthecrystalsurface,itisassumedthattherearedifferentdegreesofsurfacebandbendingwithinthefinitethinsurfacelayer.Anotablylargerupwardbandbendingisdrawnforthe{100}facetorepresentagreaterbarriertoelectronFigure4.(a)AdjustedbanddiagramsofSrTiO3forcurrentflowintotransportfromtungstenintoSrTiO3.The{110}faceshouldthecrystalfromthe{110}faceandexitingthroughthe{100}face.haveamoderateupwardbandbendingtoindicateasmall(b)AdjustedbanddiagramsofSrTiO3forcurrentflowintothebarriertochargetransferacrossthissurface,ascurrentrisescrystalfromthe{100}faceandexitingthroughthe{110}face.Theonlyaboveanappliedvoltageof2V.FermilevelisdrawntoindicatetheequilibriumstatebeforeabiasFigure3presentsthemeasuredI−Vcurvewithtungstenvoltageisapplied.probescontactingsimultaneouslythe{110}and{100}facesofaSrTiO3truncatedrhombicdodecahedron.AdditionalI−VcurvesareavailableinFigureS2.ClearlyasymmetricI−Vcurveswereobtainedwithnearlyzerocurrentinthedirectionthemoreconductive{110}faceandexitingfromthe{100}of{100}to{110}(orcurrententeringthecrystalfromtheface,thisdirectionyieldsalargecurrentbecausethebarriertoelectrontransportintothecrystalislow(Figure4a).Notethatthedegreeofbandbendingontheexiting{100}faceisdrawntobelessthanthatseeninFigure2.Thisideaoftunablebandbendingdependingonthedirectionofcurrentflowintooroutofaparticularcrystalfacewasadoptedtoexplaintheoppositecurrent-rectifyingbehaviorsseenbetweenCu2O,Ag2O,and8PbScrystalsandSi,Ge,andGaAswafers.Somevariationinthesurfacebandtuningforthesamecrystalfaceisacceptabledependingonthecurrentflowdirection,becausechargecarriersshouldexperiencedifferentbarrierheightsmovingfromametalintoacrystalandfromthecrystalinteriorintoametal.Inthisway,thelowerbandbendingforelectronsmovingoutofSrTiO3throughthe{100}facemeansahighcurrentforthiscurrentdirection.WhencurrentflowsintoSrTiO3fromthe{100}face,itmeetsalargebarrier,andthereisnocurrentinthisdirection.However,ifsufficientlyhighFigure3.I−Vcurverecordedwithtungstenprobescontactingvoltagesareappliedtoovercomethisbarrier,theexiting{110}simultaneously{100}and{110}facesofaSrTiO3truncatedrhombicfacecanbeconsideredtohavearelativelysmallbarrier,andadodecahedron.tinycurrentcanbemeasured.10053https://doi.org/10.1021/acs.jpcc.1c01047J.Phys.Chem.C2021,125,10051−10056
3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure5.I−Vcurvesrecordedwithtungstenprobescontactingproximal(a){111},(b){100},and(c){110}facesofsingleCu2Orhombicuboctahedron.(d)SummaryoftheI−Vcurves.Itisintriguingwhyasmallcurrentwasrecordedwiththattheuseofsharperelectrodetipsshouldremoveelectrodescontactingthe{100}facesofaSrTiO3truncatedconductivityinfluencebytheadjacentconductivefacets.rhombicdodecahedronbeyond3V,whilenocurrentwasHowever,theadjacentfaceteffectmayindeedbepresent,someasuredforaperfectSrTiO3cubebelow15V.Itissuspectedthiscanbeanewphenomenon.thataslightcurrentfromatungstenprobemayleakintoFinally,DFTcalculationsonSi,Ge,andGaAshaverevealedSrTiO3throughits{110}faceadjacenttothecontacting{100}variationsinbondlengthof0.1Åandbondgeometryofafewface,despiteSEMevidenceofclearprobecontactsonbothpercentwithinthesurfacelayergivingrisetotheobserved{100}faces.Toseeifthisphenomenonisalsoobservableonfacet-dependentproperties,sothesamelatticefeatureshould11−13othercrystals,Cu2OrhombicuboctahedralmicrocrystalsbepresentinSrTiO3.IfDFTpredictionsarevalid,the2,23exposing{100},{110},and{111}facetsweresynthesized.bestwaytocheckthisistocompareatomicorionicpositionsByuseofasingleCu2Ocube,octahedron,andrhombicbetweensurfaceandinterioratomsorions.Figure6givesHR-dodecahedronforelectricalconductivitymeasurements,theTEMimagesof{100}-truncatedSrTiO3rhombicdodecahedra{111}facesofCu2Owerefoundtobemuchmoreconductive2thanits{100}faces,whilethe{110}faceswereinsulating.The{100}facesalsoexhibitedmuchenhancedconductivitywithtungstenprobescontactingthe{100}facesofatruncatedoctahedron,sotheinfluenceofadjacent{111}facetscanalso1bepresentinCu2Ocrystals.Becausetheprobetipswerelargerthanthecontacted{100}faces,currentleakageseemsprobable.Figure5showstheI−Vcurveswithelectrodescontactingproximal{100},{110},and{111}facesofasingleCu2Orhombicuboctahedron.MultipleI−VcurvesobtainedfrommeasurementsonasingleCu2OrhombicuboctahedronareavailableinFigureS3.Again,the{111}facesaremoreconductivethanthe{100}faces,althoughlowcurrentswererecordedforthe{111}facespossiblyduetothelargeparticleFigure6.(a)HR-TEMimagesofonesmall{100}-truncatedSrTiO3size.The{110}surfacesremainedinsulating,despitebeingrhombicdodecahedronandTEMimageoftheparticle.Thecrystalsurroundedbymoreconductivefacets.Notethatnowthemodelisdrawn.(b)HR-TEMimageofanother{100}-truncatedprobetipsaremuchsmallerthanthecontactedfaces,sotheSrTiO3rhombicdodecahedron.Thelinesaredrawntocheckifionicadjacentfaceteffectisnotpresent.Thisinvestigationsuggestspositionsnearthecrystalsurfacehaveshiftedfrominterioratoms.10054https://doi.org/10.1021/acs.jpcc.1c01047J.Phys.Chem.C2021,125,10051−10056
4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlerecordedonaCs-correctedhigh-resolutiontransmissionI−Vcurves,andHR-TEMimageofaSrTiO3cubeelectronmicroscope(JEM-ARM200F).(110)latticeplanes(PDF)arealignedparalleltothecrystaledge.Ataglance,thelatticeappearstobeperfectthroughoutthecrystal,andalinedrawn■AUTHORINFORMATIONacrossarowofsurfaceatomsorionsshowsexcellentCorrespondingAuthorsalignmentoftheirpositions(forexample,thegreenlineinLih-JuannChen−DepartmentofMaterialsScienceandFigure6b).Interestingly,whenalinedrawnacrossthecentersEngineeringandFrontierResearchCenteronFundamentalofinterioratomsisduplicatedandmovedtofitthesurfaceandAppliedSciencesofMatters,TsingHuaUniversity,atoms,clearpositionalshiftsordeviationsoverfewlayersofHsinchu30013,Taiwan;orcid.org/0000-0002-0826-surfaceatomscanbeobservedindifferentparticles.The8680;Email:ljchen@mx.nthu.edu.twsurfaceatomscanappeartotherightorleftsideoftheline.InMichaelH.Huang−DepartmentofChemistryandFrontiercontrasttosurfaceatomreconstruction,whichinvolvesResearchCenteronFundamentalandAppliedSciencesofpositionalshiftsofonlythesurfaceatoms,thedeviations24Matters,TsingHuaUniversity,Hsinchu30013,Taiwan;reachintoseveralatomiclayersbelowthecrystalsurface.orcid.org/0000-0002-5648-4345;Email:hyhuang@HR-TEMimagesofSrTiO3cubespossiblyalsoshowslightmx.nthu.edu.twpositionaldeviationsforthefirstfewlayersintothecrystalsurface(seeFigureS4).AlthoughitisnotclearifsuchAuthorsphenomenonprovidesadirectevidenceofthepresenceofthePei-LunHsieh−DepartmentofMaterialsScienceandsurfacelayerrevealedbyDFTcalculations,itpointstotheEngineeringandFrontierResearchCenteronFundamentalneedtoexaminemoresemiconductormaterialstoestablishifandAppliedSciencesofMatters,TsingHuaUniversity,thissubtlesurfacestructuralfeatureisprevalent.AgaintheHsinchu30013,TaiwandeviationsshouldbequitesmallandwouldnotberevealedMaheshMadasu−DepartmentofChemistryandFrontierwithoutcloseexamination.ResearchCenteronFundamentalandAppliedSciencesofMatters,TsingHuaUniversity,Hsinchu30013,Taiwan;■CONCLUSIONSorcid.org/0000-0002-0822-2244Chien-HsuanHsiao−DepartmentofChemistryandFrontierElectricalconductivitymeasurementsonasingleSrTiO3cubeResearchCenteronFundamentalandAppliedSciencesofandtruncatedrhombicdodecahedronshowedaninsulatingMatters,TsingHuaUniversity,Hsinchu30013,Taiwanresponseforthe{100}facesofthecubebutimprovedYun-WenPeng−DepartmentofChemistryandFrontierconductivityforthe{100}facesofatruncatedrhombicResearchCenteronFundamentalandAppliedSciencesofdodecahedron.The{110}facesaremuchmoreconductive.Matters,TsingHuaUniversity,Hsinchu30013,TaiwanCurrent-rectifyingasymmetricI−Vcurveswerecollectedwithelectrodescontactingbothfacets,implyingnovelFETCompletecontactinformationisavailableat:fabricationusingtheelectricalfaceteffectsofperovskitehttps://pubs.acs.org/10.1021/acs.jpcc.1c01047SrTiO3.ModifiedbanddiagramsarepresentedshowingdifferentdegreesofsurfacebandbendingandtherebydifferentNotesbarrierstocurrenttransportacrossthesecrystalfaces.Theauthorsdeclarenocompetingfinancialinterest.ConductivitymeasurementsperformedontheproximalfacesofaCu2Orhombicuboctahedronshowedthattheadjacent■ACKNOWLEDGMENTSfacetinfluencemakinganinsulatingsurfacebecomemoreWethankthefinancialsupportfromtheMinistryofScienceconductivecanbeminimizedoravoidedwiththeuseofandTechnology,Taiwan(GrantsMOST107-2221-E-007-electrodeshavinganapparentlysmallertipareacomparedto055-MY3,107-2113-M-007-013-MY3,and109-2634-F-007-thecontactingface.However,itispossiblethattheadjacent023).FinancialsupportalsocomesfromtheMinistryoffaceteffectisanintrinsicnatureofSrTiO3crystalsandwouldEducation,Taiwan.notdisappearevenwiththeuseofsharpelectrodes.Thisworkdemonstratesagainthegeneralpossessionoffacet-dependent■REFERENCESelectricalpropertiesofsemiconductormaterialsthatcanbe(1)Kuo,C.-H.;Yang,Y.-C.;Gwo,S.;Huang,M.H.Facet-exploredforelectroniccomponentdesignwithoutrelyingonDependentandAuNanocrystal-EnhancedElectricalandPhoto-impuritydopingorp−njunctionfabrication.Inaddition,shiftscatalyticPropertiesofAu−Cu2OCore−ShellHeterostructures.J.Am.inatomicpositionsinthetopfewlayersofsurfaceplaneshaveChem.Soc.2011,133,1052−1057.beenobserved,suggestingthatthethinsurfacelayerrevealed(2)Tan,C.-S.;Hsu,S.-C.;Ke,W.-H.;Chen,L.-J.;Huang,M.H.byDFTcalculationsofothersemiconductormaterialsmaybeFacet-DependentElectricalConductivityPropertiesofCu2OCrystals.observablewithhigh-resolutionTEMimagesandcarefulNanoLett.2015,15,2155−2160.analysis.(3)Tan,C.-S.;Chen,Y.-J.;Hsia,C.-F.;Huang,M.H.Facet-DependentElectricalConductivityPropertiesofSilverOxideCrystals.Chem.-AsianJ.2017,12,293−297.■ASSOCIATEDCONTENT(4)Liu,G.;Yin,L.-C.;Pan,J.;Li,F.;Wen,L.;Zhen,C.;Cheng,H.-*sıSupportingInformationM.GreatlyEnhancedElectronicConductionandLithiumStorageofFacetedTiO2CrystalsSupportedonMetallicSubstratesbyTuningTheSupportingInformationisavailablefreeofchargeatCrystallographicOrientationofTiO2.Adv.Mater.2015,27,3507−https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01047.3512.(5)Kim,C.W.;Yeob,S.J.;Cheng,H.-M.;Kang,Y.S.ASelectivelyExperimentalproceduresforthesynthesisofCu2OExposedCrystalFacet-EngineeredTiO2ThinFilmPhotoanodeforrhombicuboctahedraandtungstenprobepreparation,theHigherPerformanceofthePhotoelectrochemicalWaterSplittingschemeforSrTiO3crystalgrowth,additionalmeasuredReaction.EnergyEnviron.Sci.2015,8,3646−3653.10055https://doi.org/10.1021/acs.jpcc.1c01047J.Phys.Chem.C2021,125,10051−10056
5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(6)Tan,C.-S.;Chen,H.-S.;Chiu,C.-Y.;Wu,S.-C.;Chen,L.-J.;Huang,M.H.Facet-DependentElectricalConductivityPropertiesofPbSNanocrystals.Chem.Mater.2016,28,1574−1580.(7)Hsieh,M.-S.;Su,H.-J.;Hsieh,P.-L.;Chiang,Y.-W.;Huang,M.H.SynthesisofAg3PO4CrystalswithTunableShapesforFacet-DependentOpticalProperty,PhotocatalyticActivity,andElectricalConductivityExaminations.ACSAppl.Mater.Interfaces2017,9,39086−39093.(8)Tan,C.-S.;Hsieh,P.-L.;Chen,L.-J.;Huang,M.H.SiliconWaferswithFacet-DependentElectricalConductivityProperties.Angew.Chem.,Int.Ed.2017,56,15339−15343.(9)Hsieh,P.-L.;Lee,A.-T.;Chen,L.-J.;Huang,M.H.GermaniumWafersPossessingFacet-DependentElectricalConductivityProper-ties.Angew.Chem.,Int.Ed.2018,57,16162−16165.(10)Hsieh,P.-L.;Wu,S.-H.;Liang,T.-Y.;Chen,L.-J.;Huang,M.H.GaAsWafersPossessingFacet-DependentElectricalConductivityProperties.J.Mater.Chem.C2020,8,5456−5460.(11)Tan,C.-S.;Huang,M.H.Metal-likeBandStructuresofUltrathinSi{111}and{112}SurfaceLayersRevealedthroughDensityFunctionalTheoryCalculations.Chem.-Eur.J.2017,23,11866−11871.(12)Tan,C.-S.;Huang,M.H.DensityFunctionalTheoryCalculationsRevealingMetal-likeBandStructuresforUltrathinGe{111}and{211}SurfaceLayers.Chem.-AsianJ.2018,13,1972−1976.(13)Tan,C.-S.;Huang,M.H.DensityFunctionalTheoryCalculationsRevealingMetal-likeBandStructuresandWorkFunctionVariationforUltrathinGalliumArsenide(111)SurfaceLayers.Chem.-AsianJ.2019,14,2316−2321.(14)Tan,C.-S.;Zhao,Y.;Guo,R.-H.;Chuang,W.-T.;Chen,L.-J.;Huang,M.H.Facet-DependentSurfaceTrapStatesandCarrierLifetimesofSilicon.NanoLett.2020,20,1952−1958.(15)Tan,C.-S.;Lu,M.-Y.;Peng,W.-H.;Chen,L.-J.;Huang,M.H.GermaniumPossessingFacet-SpecificTrapStatesandCarrierLifetimes.J.Phys.Chem.C2020,124,13304−13309.(16)Tan,C.-S.;Chen,L.-J.;Huang,M.H.LargeFacet-SpecificBuilt-inPotentialDifferencesAffectingTrapStateDensitiesandCarrierLifetimesofGaAsWafers.J.Phys.Chem.C2020,124,21577−21582.(17)Huang,M.H.;Naresh,G.;Chen,H.-S.Facet-DependentElectrical,Photocatalytic,andOpticalPropertiesofSemiconductorCrystalsandTheirImplicationsforApplications.ACSAppl.Mater.Interfaces2018,10,4−15.(18)Huang,M.H.;Madasu,M.Facet-DependentandInterfacialPlane-RelatedPhotocatalyticBehaviorsofSemiconductorNanocryst-alsandHeterostructures.NanoToday2019,28,100768.(19)Huang,M.H.Facet-DependentOpticalPropertiesofSemiconductorNanocrystals.Small2019,15,1804726.(20)Hsieh,P.-L.;Naresh,G.;Huang,Y.-S.;Tsao,C.-W.;Hsu,Y.-J.;Chen,L.-J.;Huang,M.H.Shape-TunableSrTiO3CrystalsRevealingFacet-DependentOpticalandPhotocatalyticProperties.J.Phys.Chem.C2019,123,13664−13671.(21)vanBenthem,K.;Elsässer,C.;French,R.H.BulkElectronicStructureofSrTiO3:ExperimentandTheory.J.Appl.Phys.2001,90,6156−6164.(22)Marschall,R.SemiconductorComposite:StrategiesforEnhancingChargeCarrierSeparationtoImprovePhotocatalyticActivity.Adv.Funct.Mater.2014,24,2421−2440.(23)Sun,S.;Song,X.;Sun,Y.;Deng,D.;Yang,Z.TheCrystal-Facet-DependentEffectofPolyhedralCu2OMicrocrystalsonPhotocatalyticActivity.Catal.Sci.Technol.2012,2,925−930.(24)Shibata,N.;Goto,A.;Choi,S.-Y.;Mizoguchi,T.;Findlay,S.D.;Yamamoto,T.;Ikuhara,Y.DirectImagingofReconstructedAtomsonTiO2(110)Surfaces.Science2008,322,570−573.10056https://doi.org/10.1021/acs.jpcc.1c01047J.Phys.Chem.C2021,125,10051−10056
此文档下载收益归作者所有