《Brush Layer Charge Characteristics of a Biomimetic Polyelectrolyte- Modi fi ed Nanoparticle Surface - Zhou et al. - 2020 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/LangmuirArticleBrushLayerChargeCharacteristicsofaBiomimeticPolyelectrolyte-ModifiedNanoparticleSurfaceTengZhou,*LuyuDeng,LiuyongShi,TingLi,XiangtaoZhong,andLipingWen*CiteThis:Langmuir2020,36,15220−15229ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Nanoparticlesurfacechargeregulationtechnologyplaysanimportantroleinionrectification,drugdelivery,andcellbiology.Thebiomimeticpolyelectrolytecanbecombinedwithnanoparticlesbynanomodificationtechnologytoformalayerofcoating,whichiscalledthebrushlayerofnanoparticles.Inthisstudy,basedonthePoisson−Nernst−Planck(PNP)equationsystem,atheoreticalmodelconsideringabionicelectrolytebrushlayerwithchargedensityregulatedbyachemicalreactionisconstructed.Thechargepropertiesofbrushednanoparticlesarestudiedbychangingthesizesofnanoparticles,thepHvalueofthesolution,backgroundsaltsolutionconcentration,andbrushlayerthickness.Theresultshowsthatthechargedensityofbrushednanoparticlesincreaseswiththeincreaseofparticlesize.Theisoelectricpoint(IEP)oftheequilibriumreactionagainstthebrushlayerispH=5.5.WhenthepH<5.5,thechargedensityoftheparticlebrushlayersdecreaseswiththeincreaseofpH,andwhenthepH>5.5,thechargedensityoftheparticlebrushlayerincreaseswiththeincreaseofpH.Bycomparingthechargedensityofdifferentbrushthicknesses,itisfoundthatthelargerthebrushthickness,thesmallerthechargedensityofthebrushlayer.Thisresearchprovidestheoreticalsupportforthechangeofthethroughporevelocitywhenmacromolecularorganiccompoundspassthroughnanopores.16DownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at12:23:38(UTC).■INTRODUCTIONcellmethod.However,thesurfacecharacteristicsofnano-Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.particlesmadeofpurelyinorganicmaterialsaredifferentfromWiththedevelopmentofnanotechnology,thepublicgraduallybegantocombinebionics,organicchemistry,andnano-thoseofcellsormicroorganisms.Forexample,polyelectrolytetechnologytosimulatethebiologicalshellsofvariousorganismslayerswithspecialchargepropertiesarepresentonmost17,18andcellsatthemicroscale,ortomodifynanoparticlesbysurfacebiologicalcellsurfaces.Hence,weemployednanomodifi-1,2modificationtechnology.Greatachievementshavebeenmadecationtechnologytocoatthesurfaceofsilicananoparticleswithinmanyfieldsbyusingsurfacemodificationtechnology,suchasbionicpolyelectrolyte(e.g.,lysine)toformasurfacebrushlayerDNAsequencing,3,4proteintransport,5drugdelivery,6,7andion19,20composedoforganicmaterials.Thiskindofbiomimetic8,9currentrectification.Atpresent,theresearchofsurfacepolyelectrolyte,whichissensitivetopHorsaltconcentration,propertiesismainlyfocusedonthenanoparticlesmadeofhasattractedbroadattentioninmanyscientificandindustrialinorganicmaterials,suchasthestudyofsurfacecharge10propertiesofsiliconoxideparticlesofdissimilarsizes,theinteractionbetweenthesilicananoparticlesandthesilicaplateinReceived:August15,2020electrolytesolution,11,12andtheelectrophoresisofsilicaRevised:November28,2020particlesofsolutionswithdifferentpHs.13,14SomepreviousPublished:December11,2020papersdiscussedthecoatingpropertiesofsteel/siliconsurface15deposition,andtheioncharacteristicsoftheanodelayerionsourceweresimulatedwiththethree-dimensionalparticle-in-©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c0241715220Langmuir2020,36,15220−15229
1Langmuirpubs.acs.org/LangmuirArticleFigure1.Schematicdiagramofnanoparticlesmodifiedbybiomimeticpolyelectrolyte.21fields.Weexploredvariousphenomenaoforganicmacro-thechangeofthechargedensityoftheparticlebrushlayerwithmoleculesinelectrolytesolutionbystudyingthiskindofbrushbackgroundsaltsolutionconcentrationandsolutionpHunder25layer,andnanoparticleswithbrushlayerpossibilitiesinthedifferentbrushthicknessesindetail.preparationofnovelnanomaterialsandfilmscanalsobeInthisstudy,atheoreticalmodelofbiomimeticpolyelec-explored.trolyte-modifiednanoparticlesisthePNPequationsystem.TheWhennanoparticleswithbrushlayerscontactwithansurfaceofnanoparticlesismodifiedbybiomimeticpolyelec-32,33electrolytesolution,thebrushlayerofparticleswillundergoatrolytetoformanorganicbrushlayer.Herein,thechargedeprotonation/protonationreaction,whichwillchangethepropertiesofbrushlayerscanbechangedbyadjustingthechargepropertiesofthebrushlayerofparticles.22Thechargechemicalreactionofthebiomimeticpolyelectrolytegroupsingeneratedbythebrushlayerwillattractorrepeltheionsinthethebrushlayer.Differentfromthepreviousstudies,whichonlysolution,andfinally,thebrushlayerofparticleswillshowexploredtheinfluenceofparticlesizeandpHofelectrolytepositiveornegativeelectricproperties.Organicmacromolecularsolutiononthesurfacechargeofnanoparticles,thispapersubstancesareaffectedbythechargepropertiesofthebrushinvestigatedthebrushlayerchargepropertiesofnanoparticleslayeroftheparticlesduringvarioustransportprocesses.Forwithabrushfromfouraspects:particlesize,pHofelectrolyteexample,thetransportefficiencyofvirusesinnanoporousmediasolution,backgroundsaltconcentration,andbrushlayerisaffectedbythechargedensityonthesurfaceoftheproteinthickness.Thismodelissuperiortosilicaparticlesinsome34shellandtheporewall.23Theabsorptionofmetalelementsbypracticalnano-biosensorapplications.Insummary,theresultssphericalmicroorganismsisinfluencedbythesizeandchargeprovidetheoreticalsupportfortheresearchonthecurrentdensitydistributionofmicroorganisms.24Thechargedensityofchangedetectionoforganicmacromolecularparticlespassing35−38brushparticlesmodifiedbybiomimeticpolyelectrolyteisthroughnanoporesandproteintransportefficiencyin39,40variablebackgroundsaltenvironments.affectedbymanyfactors,suchasparticlesizes,thethicknessofthebrushlayer,pHofelectrolytesolution,andconcentration25ofthebackgroundsaltsolution.Becauseofthedifferent■MATHEMATICALMODELcurvature,thebrushlayerchargedensitywithdifferentsizeswillAsphericalnanoparticlewithradiusofRpisplacedinanchangedifferently.Forexample,thesizeofporcinecircovirusiselectrolytesolutionincludingXtypesofions,asshowninFigureabout17nm,andthatofmycoplasmacellsisabout100nm;1.ThisstudyselectstheKClsolutionwithaconcentrationoftheirchargepropertiesontheproteinshellandonthecellCKClasthebackgroundsaltsolutionintheelectrolyte;KOHand26,2728membranearedifferent.Inaddition,Luetal.studiedtheHClareusedtoregulatethepHoftheelectrolytesolution.nanoparticleswithdifferentsurfacemodificationsintherangeTherefore,therearefourkindsofionsinsolution:H+,K+,OH−,2−100nmandassumedaconstantparticlechargetoandCl−.Thesurfaceofnanoparticlesismodifiedbybiomimetic29characterizetheparticle−waterinteraction.However,pre-polyelectrolyteP∼NH2andP∼COOH(e.g.,lysine)toformaviousstudiesmostlyconcentrateontheeffectofpolymerbrushlayerwithathicknessofdm.Atthenanoscale,weregardgraftingdensityonthechargedensityofthebrushlayerbythebrushlayerasasinglechainconnectedbymultiplechangingthegraftingdensityofpolymerinthebrushlayer.Inelectrolytegroups,whichisuniformlyandtightlyconnectedtobiomimeticpolyelectrolyte-modifiednanochannels,thegraftingtheparticlesurface.Therefore,theinfluenceofparticlesurfacedensityofpolyelectrolyteinthebrushlayeraffectstheionpropertiesisignored.Thisstudyisbasedonthesteady-state.selectivity,channelconductivity,andthebrushlayerchargeThus,theinfluenceofthefunctionalgroupchaindeformationis30,31density.Unfortunately,thereareafewreportsontheeffectalsoignored.ofthethicknessofthebrushlayeronthechargedensityoftheAtwo-dimensionalaxisymmetricmodelisusedinthisstudy.particlebrushlayer.AfurtherdiscussionhasnotbeenhadaboutTherearemanykindsofionsinthesolution.Thepotentialand15221https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
2Langmuirpubs.acs.org/LangmuirArticleionmasstransferinsolutionarecontrolledbythesteady-stateρ=[1000(PF∼]NH+−−[P∼]COO)m3PNPequationsystemiKΓKΓ[H+]yjjaabbzz4=−1000Fjj+zz2jK+[]H+1H+[]K+z−∇==εε0fϕρeFz∑icikab{(9)i=1(1)ThenetvolumedensitiesoftheacidelectrolytegroupandalkalineelectrolytegroupareΓ=[P∼COO−]+[P∼COOH]anda=Nσ/1000dnandΓ=[P∼NH+]+[P∼NH]=Nσ/mmab32m∇·=∇ND·−∇−ijjczDiFc∇=ϕyzz0,i=(1,2,3,4)1000dmna,respectively.σmisthegraftingdensityofthebrushiijiiizkRT{layerontheparticlesurface(thenumberofelectrolytegroup(2)chainsconnectedontheparticlesurfaceinunitvolume,242−44whereFistheFaradayconstant;ϕisthepotentialinsidegenerallyfrom0.05to0.6chains/nm),naistheAvogadroconstant,andNisthenumberofelectrolytegroupsonasingleelectrolytesolution;Ni,ci,zi,andDirepresenttheionicfluxes,chaininthebrushlayer.themolarconcentration,valence,anddiffusioncoefficientofthe++−Consideringthechargepropertiesofthebrushlayer,theithionicspecies(i=1forH,i=2forK,i=3forCl,andi=4−averagevolumechargedensityofthebrushlayerisdefinedasforOH),respectively;ρeisthespacechargedensityinsidetheelectrolytesolution;Ristheuniversalgasconstant;ε0isthe1RdPm+absolutedielectricconstant;εfistherelativedielectricconstantρ=∫ρmdydmRP(10)oftheelectrolytesolution;andTistheabsolutetemperatureofelectrolytesolution.Ontheinnersurfacesofthenanoparticle,Aelectricdoublelayer(EDL)withathicknessofλDexiststhenormalionicfluxofeachspeciesiszero,n·Ni=0(i=1,2,3,outsidetheparticlebrushlayer:4).Theelectricpotentialϕatinfinityissetto0.Inthebrush4layerofnanoparticles,thebulkchargedensityofthebrushlayer22boundarycondition,−ε0εf·n·∇ϕ=ρm,isimposed.λD0=εεfRT/∑FzCii0Inordertosolvethecouplingeq1andeq2,appropriatei=1(11)boundaryconditionsarerequired.AxisymmetricboundaryInordertoavoidtheeffectofelectricdoublelayeroverlapconditionsareappliedalongthey-axisforeachionicbetweenparticlesandthesolutiondomain,thefar-fieldconcentrationandforelectricpotential.Inareasfarawayfromboundaryasd=RP+60λDisemployedinthesolutionthechargednanoparticles(e.g.,dottedlineinFigure1),itisprocedure.assumedthattheionicconcentrationofeachkindretainsitsvolumeconcentration,ci=Ci0,i=1,2,3,4.Accordingtothe■EXPERIMENTALSECTIONelectroneutralcondition,thevolumeconcentrationofvarious41Theabove-mentionedtwo-dimensionalaxisymmetricmodelisionsinthesolutionisasfollowssimulatedbyCOMSOLMultiphysics(version4.0).Thisstudyisbasedonthesteady-statePNPequationsystemtocoupleelectricfield−+pH3−−+(14pH)3CC10==10and4010(3)andflowfield.Theeffectsofparticlesize,pHvalueofelectrolytesolution,concentrationofthebackgroundsaltsolution,andthebrushCC20==KClandCCCC30KCl+10−≤40whenpH7layerthicknessonthechargecharacteristicsofthebrushlayerarediscussedthroughthecalculationresultsofthenumericalscheme.Free(4)triangularmeshwithinthemodelisadopted;thetotalnumberofCCCCCC20=−+KCl1040and30=KClwhenpH>7triangularmeshesis28854,andthenumberoftriangularmeshesinthebrushlayeris924.(5)Thefollowingphysicalparametersareusedinthesimulations:ε0=8.854×10−12CV−1m−1,ε=80,R=8.31Jmol−1K−1,F=96490CWhenthepHofthesolutionchanges,thebiomimeticfmol−1,andT=298K,respectively.Theuniformnanoparticlebrushpolyelectrolytegroups’,P∼COOHandP∼NH2,layerinthestructureandthedeformationofthebrushlayerareignored,protonation/deprotonationreactionswilloccurinsidethewhichiseffectiveiftherepeatedunitNofthebiomimeticbrushlayer43polyelectrolytegroupsisinarelativelylowrange(e.g.,N≤20).−+(6)Thegraftingdensityofbiomimeticelectrolyteinthebrushlayerisσm=P∼↔COOHP∼+COOH−20.15chainsnm;thenumberofelectrolytegroupsonasingle-chainis++N=20,pKa=−logKa=2.2(α-carboxyl),pKb=−logKb=−8.8(α-P∼+↔NH23HP∼NH(7)amino).25,45Therelativepermittivityεandthediffusivityoftheionicfspeciesi,Di,insidethenanoparticlebrushlayersarethesameasthoseAssumingtheequilibriumconstantsofthetworeactionsareKaoutsidethem.ThediffusioncoefficientsofH+,K+,OH−,andCl−areDiandKb,respectively(i=1,2,3,4)=9.31×10−9,1.96×10−9,5.30×10−9,and2.03×10−9,respectively.−+[∼PNH+][∼PCOOH][]3Inordertoverifythecorrectnessofournumericalcalculationresult,KKab=and=+thecodeofthismodelisvalidatedbycomparingwiththeresultofrefs[∼PCOOH][∼PNHH2][](8)31and25,whichderivedthechangecurveofthechargedensityofthewhere[H+]isthelocalconcentrationofH+inthebrushlayer,brushlayeronthechannelwallwhenthegatevoltageiszero.Forthe[H+]=10−pHexp(−ϕ/ϕ),andϕ=RT/Fdenotestheconvenienceofverification,wedesignedaplatemodifiedby00biomimeticpolyelectrolyte(particleswithinfiniteradiuscanbereferencethermalpotential.[P∼COO−],[P∼COOH],[P∼regardedasaplate),whichisplacedinthesolutiondomainwithaNH],and[P∼NH+]denotethebulkdensityofeach23backgroundsaltconcentrationof1mM.Bynumericalsimulationandelectrolytegroupinthebrushlayer,respectively.Itcanbeshowncalculation,thecurveofthebrushlayerchargedensitywithpHisdrawnthatthevolumechargedensityofthebrushlayercanbeandcomparedwiththeresultsinrefs31and25.Itisclearlyillustratedexpressedasthatoursimulationresult(blackcurve)isfullyconsistentwiththe15222https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
3Langmuirpubs.acs.org/LangmuirArticleanalysisresult(reddot)ofrefs31and25,asshowninFigure2.Thus,modelcalculationandcomparedwiththeresultsinthetheaccuracyandreliabilityofthepresentmodelhavebeenverified.literature,25,46,47whenpH=5.5,thechargedensityofthebrushlayerisclosetozero;thus,pH=5.5istheisoelectricpoint(IEP)oftheparticlebrushlayer.ThisshowsthatwhenpH=5.5,thenumberofP−COO−groupsandP−NH+groupsinthe3brushlayerstaysequal,whichmakesthebrushlayerinanelectricallyneutralstate.Fromtheabovephenomena,itfollowsthatthenanoparticlebrushlayercanmaintainanelectricallyneutralstatebyadjustingthepHvalue,sothattheeffectofelectricfieldontheparticlescanbeneglectedtosomeextentwhenmodelsaredevelopedorexperimentsarecarriedout.Fromtheabovediscussion,itcanbeseenthatwhenpH<5.5,thechargedensityoftheparticlebrushlayerdecreaseswiththeincreaseofpHfromFigure3.WhenpH>5.5(thechargedensityisnegativeatthistime),thechargedensityoftheparticlebrushlayerincreaseswiththeincreaseofpH.BecausewhenpH<5.5,P∼NH+H+↔P∼NH+isthedominantreactioninthe23brushlayer,andalargenumberofthegroupsofP∼NH2unitewithH+toformthegroupsofP∼NH+inthebrushlayer.Asa3result,thechargedensityofthebrushlayerisofpositivepolarity,andtheconcentrationofH+inthebrushlayerdecreaseswiththeFigure2.FluctuatingcurveofthebrushlayerchargedensitydependingincreaseofpH,whichleadstothedecreaseofthechargedensityonpHoftheplate,asshownasthesolidblackline;thereddotofthebrushlayerasthereactionproceedstothereverse.Whenrepresentstheanalysisresultinrefs31and25.CKCl=1mM.pH>5.5,thedominantreactioninthebrushlayertransformintoP∼COOH↔P∼COO−+H+.Atthistime,alarge■numberofthegroupsofP∼COOHinthebrushlayerdissociateRESULTSANDDISCUSSION+−HandthegroupsofP∼COO,whichresultsinnegativeChargeDensityoftheBrushLayer:pHEffect.Throughpolarityofbrushchargedensity.Atthesametime,withthetheanalysisofthecalculationresults,itcanbeconcludedthat+increaseofpH,theconcentrationofHinthebrushlayerthechangeofbulkchargedensityinthebrushlayerwillbedecreases,whichmakethereactionproceedtotheforwardandaffectedbythechangeofparticlesizeandpHvalueintheultimatelyleadstoanincreaseofnegativebrushchargedensity.solution.Figure3depictsthebrushchargedensityofFromFigure3,itcanbeseenthatthechargedensityofthebrushlayerdependsonnanoparticlesize.Theabsolutevalueofbrushchargedensity|ρ|decreaseswiththeincreaseofparticlesizeatacertainpH.Withtheincreaseofparticlesize,thecontactareabetweentheparticlesandthesolutionincreases,andthelocalconcentrationofH+inthebrushlayerincreases,whichleadtothedecreaseofthechargedensityofthebrushlayer.Foraclearerdescriptionoftheeffectofparticlesizeonthechargedensityoftheparticlebrushlayer,wenormalizethechargedensityoftheparticlebrushlayerandthatoftheplatebrushlayeratdifferentpHs.Figure4depictsthefunctionalrelationshipbetweenthenormalizedbrushchargedensityofnanoparticlesandpHwhentheconcentrationoftheback-groundsaltsolutionis1mM.Whentheparticlesizeis80nm,thenormalizedcurveoftheparticleiscloseto1,whichindicatesthatthechargedensityoftheparticlebrushlayerislessaffectedbythesizewhentheparticleradiusincreasestoacertain10extent.ThechangeofchargedensitywithpHcanbeexplainedbychangingtheconcentrationofH+inthebrushlayer.AsFigure3.BrushlayerchargedensityofnanoparticleswithdifferentsizesasafunctionofpHwhentheconcentrationofthebackgroundsaltshowninFigure5,whenpH<5.5,thechargedensityofthesolutionequals1mM.brushlayerisofpositivepolarity,andthenormalizedtheconcentrationofH+inthebrushlayerincreasesatfirstandthendecreaseswiththechangeofpH,reachingthemaximumwhennanoparticleswithdifferentsizesvaryingwithpHwhenthepHis3.5.Similarly,whenpH<5.5,thechargedensityoftheconcentrationofthebackgroundsaltsolutionis1mM(CKCl=1brushlayerinFigure4increasesatfirst,thendecreases,andmM).Meanwhile,thebrushchargedensityofthebrushplatereachesthemaximumwhenpHis3.5.WhenpH>5.5,thecanbetreatedasarulertodealwiththebrushchargedensityofchargedensityofthebrushlayerisofnegativepolarity,andthenormalizedconcentrationofH+inthebrushlayerdecreasesatparticlesinadimensionlessway.AscanbeseenfromFigure3,thebrushchargedensityofparticlesisofpositivepolaritywhenfirstandthenincreaseswiththechangeofpH,reachingthethesolutionpHislessthanafixedvalue.WhenthesolutionpHmaximumwhenpHis7.5,asshowninFigure5.Atthesameisgreaterthanafixedvalue,thebrushchargedensityofparticlestime,thechargedensityofthebrushlayerinFigure4increasesatshowsnegativepolarity.Asaconsequenceofthetheoreticalfirst,thendecreases,andreachesthemaximumwhenpHis7.5.15223https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
4Langmuirpubs.acs.org/LangmuirArticleFigure4.Normalizedcurveofthebrushlayerchargedensityofnanoparticleswithdifferentsizesat1mMsaltsolutionconcentration[(a)pH<5.5,(b)pH>5.5].layerturnsintonegativepolarity.AtthesamepH,thechargedensityoftheparticlebrushlayerincreaseswiththeincreaseofbackgroundsaltconcentration,andthecurvetendstobeflatwhenthebackgroundsaltsolutionconcentrationincreasestoacertainextent.ThechargedensityofthenanoparticlebrushlayerismainlyaffectedbytheconcentrationofH+inthebrushlayer.Figure7depictstheconcentrationvariationofH+inthebrushlayerwiththeconcentrationofthebackgroundsaltsolutionatdifferentpHs.TheconcentrationvariationofH+intheparticlebrushlayerisinfluencedbytheconcentrationofK+inthebrushlayer,whichisnotonlyrelatedtotheconcentrationofthebackgroundsaltsolutionbutalsoaffectedbythepositiveandnegativepropertiesofbrushchargeatdifferentpHs.Figure8depictstheconcentrationvariationofK+intheparticlebrushlayerdependingontheconcentrationofthebackgroundsaltsolutionatdifferentpHs.WhenpH<5.5,theconcentrationofK+inthebrushlayerislessthanthatinthebackgroundsaltsolution.With+Figure5.NormalizationcurveoftheconcentrationofHinthebrushtheaidoftheconcentrationofK+inthebackgroundsaltsolutionlayerofnanoparticleswithdifferentsizesat1mMsaltsolution+subtractedfromtheconcentrationofKinthebrushlayer,theconcentration.+changeratesoftheconcentrationofKinthebrushlayerareobtained,asshownFigure8a,b.WhenpH>5.5,theChargeDensityoftheBrushLayer:BackgroundSalt+concentrationofKinthebrushlayerishigherthanthatinConcentrationEffect.ItcanbeobservedinFigure3thatthethebackgroundsaltsolution.Withtheaidoftheconcentrationcurveoftheparticleradiusat80nmcoincideswiththatat100++ofKinthebrushlayersubtractedfromtheconcentrationofKnm,whichshowsthatwhentheradiusofnanoparticlesincreasesinbackgroundsaltsolution,thechangeratesoftheto80nm,theparticlesizehaslittleeffectonthechargedensityofconcentrationofK+inthebrushlayerarethusobtained,asthebrushlayer.SincethesizeofmostDNAmoleculesisshownFigure8c,d.SoitcanbeseenfromFigure8,whenpH
5Langmuirpubs.acs.org/LangmuirArticleFigure6.ChargedensityofnanoparticlebrushlayerdependingontheconcentrationofthebackgroundsaltsolutionatdifferentpHs:(a)pH=3,3.5,4;(b)pH=4.5,5,5.5;(c)pH=6,6.5,7;(d)pH=7.5,8,8.5.Figure7.CurvesofH+intheparticlebrushlayerwithbackgroundsaltsolutionconcentrationatdifferentpHs:(a)pH=3,3.5,4;(b)pH=4.5,5,5.5;(c)pH=6,6.5,7;(d)pH=7.5,8,8.5.brushlayerisattracted,whichmakestheK+concentrationinthedensityofthebrushlayer.Classically,thesizeofbiomimeticbrushlayerlargerthanthatinthesolution.Withtheincreaseofpolyelectrolytechainsisabout1−3nminanα-helicalstructuretheconcentrationofthebackgroundsaltsolution,thedifferenceandabout6nminaβ-foldedstructurewhenthenumberofbetweentheconcentrationofK+inthebrushlayerandthegroupsN=20.45WehavemadeanexplorationbyestablishingaconcentrationofK+inthesolutionincreases.Asaresult,themathematicalmodelforthecalculationandanalysisand+comparingwiththeresultsintheliterature.21,25UndertheconcentrationofKinthebrushlayerincreasesrelativetothatinsolution,andtheH+exclusioneffectsareincreased.Theconditionofafixednanoparticleradiusof10nm,theeffectofconcentrationofH+inthebrushlayerdecreaseswiththechangingthethicknessofthebrushlayeronthechargeincreaseofbackgroundsaltsolutionconcentration,asshowninpropertiesofthebrushlayerisdiscussedbycomparingtheFigure7c,d.changesofthechargedensityofthebrushlayeratdifferentChargeDensityoftheBrushLayer:BrushThicknessbackgroundsaltconcentrationsandsolutionpHs.TheeffectofEffect.Thethicknessofthebrushlayeralsoaffectsthechargechangingthethicknessofthebrushlayeronthecharge15225https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
6Langmuirpubs.acs.org/LangmuirArticleFigure8.CurveofK+intheparticlebrushlayerwithbackgroundsaltsolutionconcentrationatdifferentpH:(a)pH=3,3.5,4;(b)pH=4.5,5,5.5;(c)pH=6,6.5,7;(d)pH=7.5,8,8.5.Figure9.ChangecurveofchargedensitywithbackgroundsaltsolutionconcentrationandpHunderdifferentbrushthicknesses:(a)atCKCl=1mM;(b)atpH=7.propertiesofthebrushlayerisdiscussed.ThecharacterdensityUndertheconditionofpH=7,thechargedensityofthebrushcurvesoftheparticlebrushlayerwithbackgroundsaltsolutionlayerisnegative,andthechargedensityofthebrushlayerconcentrationandpHunderdifferentbrushthicknessesareincreaseswiththeincreaseoftheconcentrationoftheshowninFigure9a,b,respectively.FromFigure9a,b,wecanseebackgroundsaltsolution,asshowninFigure9a.TheconcentrationofH+inthebrushlayerdecreaseswiththethatthechargedensityoftheparticlebrushlayerincreaseswithincreaseofbackgroundsaltsolutionconcentration,asshowninthedecreaseofthebrushlayerthicknessattheuniformFigure10a.TheconcentrationofH+inthebrushlayerisaffectedbackgroundsaltconcentrationorpH.ReducingthethicknessofbytherelativeconcentrationofK+inthebrushlayer(thethebrushlayerisequivalenttoincreasingthedensityof+differencebetweentheconcentrationofKinthebrushlayerbiomimeticpolyelectrolyteinthebrushlayer,whichmakesthe+andtheconcentrationofKinsolution),asshowninFigure10b.densityofvariousgroupsinvolvedinchemicalreactionsandFromFigure10a,b,itcanbeseenthatwhenthethicknessofthechemicalreactionsinthebrushlayerincrease,resultinginabrushlayerdecreases,theconcentrationofH+andK+inthesignificantincreaseinthepositive(ornegative)chargedensityinbrushlayerincreasesinthesamebackgroundsaltsolutionthebrushlayer.ComparingFigures3and9b,wecanseethattheconcentration.Byvirtueofthedecreaseofthebrushlayerchangeprocessandtrendofchargedensityoftheparticlebrushthickness,thenegativechargedensityoftheparticlebrushlayerlayeratdifferentpHsremaininvariableregardlessofthechangeincreases,andthecationattractionincreases.FromFigure10a,b,ofparticlesizeorbrushthickness.thesmallerthethicknessofthebrushlayer,themoreobviousthe15226https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
7Langmuirpubs.acs.org/LangmuirArticleFigure10.VariationcurveofionconcentrationwithbackgroundsaltsolutionconcentrationunderdifferentbrushthicknessesatpH=7.(a)ConcentrationofH+.(b)ConcentrationofK+.changeoftheconcentrationofK+curve;thelargerthethicknessorcid.org/0000-0002-8744-9083;Email:zhouteng@ofthebrushlayer,themoreobviousthechangeofthehainanu.edu.cnconcentrationofH+curve.Therefore,whenweneedtoobserveLipingWen−CASKeyLaboratoryofBio-InspiredMaterialsthetrendoftheconcentrationofK+change,wecanchooseaandInterfacialScience,TechnicalInstituteofPhysicsandsmallerbrushthickness.WhenweneedtodiscusstheeffectofChemistry,ChineseAcademyofSciences,Beijing100190,theconcentrationofH+onchargedensity,wecanchoosetheChina;Email:wen@mail.ipc.ac.cnlargerbrushthickness.Authors■LuyuDeng−MechanicalandElectricalEngineeringCollege,CONCLUSIONSHainanUniversity,Haikou570228,Hainan,ChinaInthisstudy,abiomimeticpolyelectrolyteisusedtomodifyLiuyongShi−MechanicalandElectricalEngineeringCollege,nanoparticlestoformanorganicbrushlayeronthesurfaceofHainanUniversity,Haikou570228,Hainan,Chinananoparticles.ThechargepropertiesofbrushednanoparticlesTingLi−InstituteofBiomedicalEngineering,ChineseAcademyareexploredfromfouraspects:thesizeofnanoparticles,thepHofMedicalScienceandPekingUnionMedicalCollage,Tianjinvalueofelectrolytesolution,theconcentrationoftheback-100730,Chinagroundsaltsolution,andthethicknessofthebrushlayer.TheXiangtaoZhong−MechanicalandElectricalEngineeringresultsshowthatthechargedensityofthebrushlayerdependsCollege,HainanUniversity,Haikou570228,Hainan,ChinauponthelocalconcentrationofH+inthebrushlayer.Thesize+Completecontactinformationisavailableat:changeofnanoparticleswiththebrushleadstothelocalHhttps://pubs.acs.org/10.1021/acs.langmuir.0c02417changeofbrushlayer,whichmakesthechargedensityofthebrushlayerdecreasewiththeincreaseofparticlesize.NotesNevertheless,whentheparticlesizeincreasesto80nm,theTheauthorsdeclarenocompetingfinancialinterest.chargedensitywillnotchangeinthebrushlayerwiththeparticleradius.Thesimulationresultsshowthatthepolarityofbrush■layerchargeisreversedatpH=5.5(IEP),andthebrushlayerACKNOWLEDGMENTSchargedensitydecreasesatfirstandthenincreases.TheionThisworkisfundedbyNationalNaturalScienceFoundationofconcentrationinthebrushlayerisaffectedbythechangeofH+China(Grant52075138,61964006,andU1830118)andandK+concentrationgradientinthesolution.TheabsoluteHainanProvincialNaturalScienceFoundation(Grantvalueofbrushlayerchargedensityincreaseswiththeincreaseof2019RC032and519MS021).backgroundsaltconcentration.ThechargedensityofthebrushlayerislargeratthesamebackgroundsaltconcentrationorpH■REFERENCESwhenthethicknessofthebrushlayerissmaller.Theseresults(1)Huang,G.;Xiong,Z.;Qin,H.;Zhu,J.;Sun,Z.;Zhang,Y.;Peng,X.;canbeusedtoexplainwhythetransportefficiencyofvariousou,J.;Zou,H.Synthesisofzwitterionicpolymerbrusheshybridsilicaproteinsisdifferentindifferentinternalenvironments.Thesenanoparticlesviacontrolledpolymerizationforhighlyefficientresultsprovidetheoreticalsupportforthetechniqueofchangingenrichmentofglycopeptides.Anal.Chim.Acta2014,809,61−8.thevelocityofmacromolecularorganiccompoundswitha(2)Lu,Y.;Ballauff,M.Sphericalpolyelectrolytebrushesasnanoreactorsforthegenerationofmetallicandoxidicnanoparticles:certainsizethroughnanoporesbycontrollingthebackgroundSynthesisandapplicationincatalysis.Prog.Polym.Sci.2016,59,86−saltsolution.104.(3)Zhao,H.;Hu,W.;Ma,H.;Jiang,R.;Tang,Y.;Ji,Y.;Lu,X.;Hou,■AUTHORINFORMATIONB.;Deng,W.;Huang,W.;Fan,Q.Photo-InducedCharge-VariableConjugatedPolyelectrolyteBrushesEncapsulatingUpconversionCorrespondingAuthorsNanoparticlesforPromotedsiRNAReleaseandCollaborativeTengZhou−MechanicalandElectricalEngineeringCollege,PhotodynamicTherapyunderNIRLightIrradiation.Adv.Funct.HainanUniversity,Haikou570228,Hainan,China;Mater.2017,27,1702592.15227https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
8Langmuirpubs.acs.org/LangmuirArticle(4)Gierhart,B.C.;Howitt,D.G.;Chen,S.J.;Zhu,Z.;Kotecki,D.E.;(25)Zhou,C.;Mei,L.;Su,Y.-S.;Yeh,L.-H.;Zhang,X.;Qian,S.GatedSmith,R.L.;Collins,S.D.NanoporewithtransversenanoelectrodesforiontransportinasoftnanochannelwithbiomimeticpolyelectrolyteelectricalcharacterizationandsequencingofDNA.Sens.Actuators,Bbrushlayers.Sens.Actuators,B2016,229,305−314.2008,132,593−600.(26)Folmsbee,M.;Howard,G.;McAlister,M.Nutritionaleffectsof(5)Pramanik,S.;Banerjee,P.;Sarkar,A.;Bhattacharya,S.C.Size-culturemediaonmycoplasmacellsizeandremovalbyfiltration.dependentinteractionofgoldnanoparticleswithtransportprotein:ABiologicals2010,38,214−217.spectroscopicstudy.J.Lumin.2008,128,1969−1974.(27)Hamel,A.L.;Lin,L.L.;Nayar,G.P.S.NucleotideSequenceof(6)Manzano,M.;Vallet-Regí,M.MesoporousSilicaNanoparticlesPorcineCircovirusAssociatedwithPostweaningMultisystemicforDrugDelivery.Adv.Funct.Mater.2020,30,1902634.WastingSyndromeinPigs.J.Virol.1998,72,5262.(7)Chang,Y.;Jiang,J.;Chen,W.;Yang,W.;Chen,L.;Chen,P.;Shen,(28)Lu,Y.;Yin,Y.;Mayers,B.T.;Xia,Y.ModifyingtheSurfaceJ.;Qian,S.;Zhou,T.;Wu,L.;Hong,L.;Huang,Y.;Li,F.BiomimeticPropertiesofSuperparamagneticIronOxideNanoparticlesthroughAmetal-organicnanoparticlespreparedwitha3D-printedmicrofluidicSol−GelApproach.NanoLett.2002,2,183−186.deviceasanovelformulationfordisulfiram-basedtherapyagainstbreast(29)Zhou,T.;Shi,L.;Fan,C.;Liang,D.;Weng,S.;Joo,S.W.Anovelcancer.AppliedMaterialsToday2020,18,100492.scalablemicrofluidicloadsensorbasedonelectrokineticphenomena.(8)Zeng,Z.;Yeh,L.H.;Zhang,M.;Qian,S.IontransportandMicrofluid.Nanofluid.2017,21,59.selectivityinbiomimeticnanoporeswithpH-tunablezwitterionic(30)Kobayashi,M.;Juillerat,F.;Galletto,P.;Bowen,P.;Borkovec,M.polyelectrolytebrushes.Nanoscale2015,7,17020−9.AggregationandChargingofColloidalSilicaParticles:EffectofParticle(9)Lin,T.-W.;Hsu,J.-P.;Lin,C.-Y.;Tseng,S.DualpHGradientandSize.Langmuir2005,21,5761−5769.VoltageModulationofIonTransportandCurrentRectificationin(31)Ma,Y.;Yeh,L.H.;Lin,C.Y.;Mei,L.;Qian,S.pH-regulatedionicBiomimeticNanoporesFunctionalizedwithapH-TunablePolyelec-conductanceinananochannelwithoverlappedelectricdoublelayers.trolyte.J.Phys.Chem.C2019,123,12437−12443.Anal.Chem.2015,87,4508−14.(10)Barisik,M.;Atalay,S.;Beskok,A.;Qian,S.SizeDependent(32)Ye,Q.;Wang,X.;Hu,H.;Wang,D.;Li,S.;Zhou,F.SurfaceChargePropertiesofSilicaNanoparticles.J.Phys.Chem.CPolyelectrolyteBrushTemplatedMultipleLoadingofPdNanoparticles2014,118,1836−1842.ontoTiO2NanowiresviaRegenerativeCounterionExchange−(11)Atalay,S.;Barisik,M.;Beskok,A.;Qian,S.SurfaceChargeofaReduction.J.Phys.Chem.C2009,113,7677−7683.NanoparticleInteractingwithaFlatSubstrate.J.Phys.Chem.C2014,(33)Fan,X.;Xia,C.;Fulghum,T.;Park,M.-K.;Locklin,J.;Advincula,118,10927−10935.R.C.PolymerBrushesGraftedfromClayNanoparticlesAdsorbedona(12)Zhou,T.;Ji,X.;Shi,L.;Zhang,X.;Song,Y.;Joo,S.W.ACPlanarSubstratebyFreeRadicalSurface-InitiatedPolymerization.dielectrophoreticdeformableparticle-particleinteractionsandtheirLangmuir2003,19,916−923.relativemotions.Electrophoresis2020,41,952−958.(34)Yeh,L.-H.;Zhang,M.;Joo,S.W.;Qian,S.;Hsu,J.-P.Controlling(13)Mei,L.;Chou,T.H.;Cheng,Y.S.;Huang,M.J.;Yeh,L.H.;pH-RegulatedBionanoparticlesTranslocationthroughNanoporesQian,S.ElectrophoresisofpH-regulatednanoparticles:impactofthewithPolyelectrolyteBrushes.Anal.Chem.2012,84,9615−9622.Sternlayer.Phys.Chem.Chem.Phys.2016,18,9927−34.(35)Goyal,G.;Freedman,K.J.;Kim,M.J.GoldNanoparticle(14)Kale,A.;Patel,S.;Qian,S.;Hu,G.;Xuan,X.JouleheatingeffectsTranslocationDynamicsandElectricalDetectionofSingleParticleonreservoir-baseddielectrophoresis.Electrophoresis2014,35,721−7.DiffusionUsingSolid-StateNanopores.Anal.Chem.2013,85,8180−(15)Bi,J.;Yang,M.;Peng,J.;Sheng,R.;Li,L.;Yick,M.-l.EffectofSi/8187.Odopingonthethermalstabilityofnon-bondedhydrogenated(36)Arjmandi,N.;VanRoy,W.;Lagae,L.;Borghs,G.Measuringthediamondlikecarboncoatings.Surf.Coat.Technol.2019,374,1006−ElectricChargeandZetaPotentialofNanometer-SizedObjectsUsing1014.Pyramidal-ShapedNanopores.Anal.Chem.2012,84,8490−8496.(16)Li,P.;Zhang,F.;Geng,S.;Zhao,J.;Tang,D.Three-dimensional(37)Minervini,C.F.;Cumbo,C.;Orsini,P.;Anelli,L.;Albano,F.Particle-In-CellsimulationofioncharacteristicsinanodelayerionNanoporeSequencinginBloodDiseases:AWideRangeofsource.Surf.Coat.Technol.2019,365,102−108.Opportunities.Front.Genet.2020,11,76.(17)deKerchove,A.J.;Elimelech,M.RelevanceofElectrokinetic(38)Harms,Z.D.;Haywood,D.G.;Kneller,A.R.;Selzer,L.;Theoryfor“Soft”ParticlestoBacterialCells:ImplicationsforBacterialZlotnick,A.;Jacobson,S.C.Single-ParticleElectrophoresisinAdhesion.Langmuir2005,21,6462−6472.Nanochannels.Anal.Chem.2015,87,699−705.(18)Borkovec,M.;Daicic,J.;Koper,G.J.M.Ionizationpropertiesof(39)Zeng,X.;Chen,S.;Weitemier,A.;Han,S.;Blasiak,A.;Prasad,A.;interfacesandlinearpolyelectrolytes:adiscretechargeIsingmodel.Zheng,K.;Yi,Z.;Luo,B.;Liu,X.VisualizationofIntra-neuronalMotorPhys.A2001,298,1−23.ProteinTransportthroughUpconversionMicroscopy.Angew.Chem.,(19)Nie,G.;Li,G.;Wang,L.;Zhang,X.NanocompositesofpolymerInt.Ed.2019,58,9262−9268.brushandinorganicnanoparticles:preparation,characterizationand(40)Braunger,K.;Pfeffer,S.;Shrimal,S.;Gilmore,R.;Berninghausen,application.Polym.Chem.2016,7,753−769.O.;Mandon,E.C.;Becker,T.;Förster,F.;Beckmann,R.Structural(20)Chen,W.-L.;Cordero,R.;Tran,H.;Ober,C.K.50thbasisforcouplingproteintransportandN-glycosylationattheAnniversaryPerspective:PolymerBrushes:NovelSurfacesforFuturemammalianendoplasmicreticulum.Science2018,360,215−219.Materials.Macromolecules2017,50,4089−4113.(41)Yeh,L.-H.;Ma,Y.;Xue,S.;Qian,S.Electroviscouseffectonthe(21)Zimmermann,R.;Kuckling,D.;Kaufmann,M.;Werner,C.;streamingcurrentinapH-regulatednanochannel.Electrochem.Duval,J.F.L.ElectrokineticsofaPoly(N-isopropylacrylamid-co-Commun.2014,48,77−80.carboxyacrylamid)SoftThinFilm:EvidenceofDiffuseSegment(42)Tagliazucchi,M.;Rabin,Y.;Szleifer,I.TransportRectificationinDistributionintheSwollenState.Langmuir2010,26,18169−18181.NanoporeswithOuterMembranesModifiedwithSurfaceChargesand(22)Milne,Z.;Yeh,L.-H.;Chou,T.-H.;Qian,S.TunableDonnanPolyelectrolytes.ACSNano2013,7,9085−9097.PotentialandElectrokineticFlowinaBiomimeticGatedNanochannel(43)Tagliazucchi,M.;Rabin,Y.;Szleifer,I.IonTransportandwithpH-RegulatedPolyelectrolyteBrushes.J.Phys.Chem.C2014,118,MolecularOrganizationAreCoupledinPolyelectrolyte-Modified19806−19813.Nanopores.J.Am.Chem.Soc.2011,133,17753−17763.(23)Rafique,S.;Bin,W.;Bhatti,A.S.Electrochemicalimmunosensor(44)Peleg,O.;Tagliazucchi,M.;Kröger,M.;Rabin,Y.;Szleifer,I.forprostate-specificantigensusingalabel-freesecondantibodybasedMorphologyControlofHairyNanopores.ACSNano2011,5,4737−onsilicananoparticlesandpolymerbrush.Bioelectrochemistry2015,4747.101,75−83.(45)Switzer,R.;Garrity,L.ExperimentalBiochemistry;W.HFreeman(24)Duval,J.F.L.DynamicsofmetaluptakebychargedPublishing:NewYork,1999.biointerphases:Bioavailabilityandbulkdepletion.Phys.Chem.Chem.(46)Špadina,M.;Gourdin-Bertin,S.;Drazič,G.;Selmani,A.;́Phys.2013,15,7873−7888.Dufreche,J.F.;Bohinc,K.ChargePropertiesofTiÔ2Nanotubesin15228https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
9Langmuirpubs.acs.org/LangmuirArticleNaNO3AqueousSolution.ACSAppl.Mater.Interfaces2018,10,13130−13142.(47)Duval,J.F.L.;Slaveykova,V.I.;Hosse,M.;Buffle,J.;Wilkinson,K.ElectrohydrodynamicPropertiesofSuccinoglycanasProbedbyFluorescenceCorrelationSpectroscopy,PotentiometricTitrationandCapillaryElectrophoresis.Biomacromolecules2006,7,2818−26.(48)Slater,G.W.;Noolandi,J.ThebiasedreptationmodelofDNAgelelectrophoresis:Mobilityvsmolecularsizeandgelconcentration.Biopolymers1989,28,1781−1791.(49)Gaboriaud,F.;Gee,M.L.;Strugnell,R.;Duval,J.F.L.CoupledElectrostatic,Hydrodynamic,andMechanicalPropertiesofBacterialInterfacesinAqueousMedia.Langmuir2008,24,10988−10995.15229https://dx.doi.org/10.1021/acs.langmuir.0c02417Langmuir2020,36,15220−15229
此文档下载收益归作者所有