2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx

2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx

ID:62328467

大小:61.12 KB

页数:7页

时间:2021-04-27

2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第1页
2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第2页
2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第3页
2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第4页
2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第5页
2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第6页
2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx_第7页
资源描述:

《2020_2021学年新教材高中数学第十章概率10.3频率与概率1教案新人教A版必修第二册.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考10.3.1频率的稳定性事件的概率越大,意味着事件发生的可能性越大,在重复实验中,相应的频率一般也越大;事件的概率越小,则事件发生的可能性越小,在重复实验中,相应的频率一般也越小.而本节课研究的就是频率与概率之间的关系.课程目标1.通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.数学学科素养1.数学抽象:频率的稳定性的理解.2.数学运算:概率的应用.重点:通过实验让学生理解当试验次数较大时,实验频率稳定在某一常数附近,并据此能估计出

2、某一事件发生的频率.难点:大量重复实验得到频率的稳定值的分析.-7-/7高考教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、情景导入重复做同时抛掷两枚质地均匀的硬币的试验,设事件A=“一个正面朝上,一个反面朝上”,统计A出现的次数并计算频率,再与其概率进行比较,你发现了什么规律?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本251-254页,思考并完成以下问题1、随着实验次数的增多,事件的频率有什么特点?2、频率与概率有什么区别与联系?要求:学生独立完成,以小组为单位,组内可商量

3、,最终选出代表回答问题。三、新知探究1.频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).-7-/7高考2.概率与频率的区别与联系频率概率区别频率反映了一个随机事件发生的频繁程度,是随机的概率是一个确定的值,它反映随机事件发生的可能性的大小联系频率是概率的估计值,随着试验次数的增加,频率会越来越接近概率四、典例分析、举一反三题型一概率的稳定性例1新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得

4、知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?【答案】(1)2014年男婴出生率约为0.537,2015年男婴出生率约为0.532.(2)见解析.【解析】(1)2014年男婴出生的频率为≈0.537,2015年男婴出生的频率为≈0.532.由此估计,我国2014年男婴出生率约为0.537,2015年男婴出生率约为0.532.-7-/7高考(2)由于调查新生儿人数的样本非常大

5、,根据频率的稳定性,上述对男婴出生率的估计具有较高的可信度.因此,我们有理由怀疑“生男孩和生女孩是等可能的”的结论.解题技巧(利用概率的稳定性解题的注意事项)(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值.(2)正确理解概率的意义,要清楚概率与频率的区别与联系.对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件.跟踪训练一1.(多选题)给出下列四个命题,其中正确的命题有()A.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正直朝上的概率是B.随机事件发

6、生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是D.随机事件发生的频率不一定是这个随机事件发生的概率【答案】CD【解析】对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B错误;对于C,抛掷骰子次,得点数是的结果有次,则出现点的频率是,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.-7-/7高考故选:CD.题型二概率的应用例2一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.在游戏过程中甲发现:玩

7、了10次时,双方各胜5次;但玩到1000次时,自己才胜300次。而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?【答案】见解析【解析】当游戏玩了10次时,甲、乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.根据频率的稳定性,随着实验次数的增加,频率偏离频率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近,而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。