因式分解用平方差公式PPT课件.ppt

因式分解用平方差公式PPT课件.ppt

ID:62012987

大小:424.51 KB

页数:11页

时间:2021-04-12

因式分解用平方差公式PPT课件.ppt_第1页
因式分解用平方差公式PPT课件.ppt_第2页
因式分解用平方差公式PPT课件.ppt_第3页
因式分解用平方差公式PPT课件.ppt_第4页
因式分解用平方差公式PPT课件.ppt_第5页
资源描述:

《因式分解用平方差公式PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、因式分解:用平方差公式竖岗镇第二初级中学张姣复习:运用平方差公式计算:.(a+2)(a-2);.(x+2y)(x-2y)3).(t+4s)(-4s+t)4).(m²+2n²)(2n²-m²)看谁做得最快最正确!(1)观察多项式x2–25,9x2-y2,它们有什么共同特征?(2)尝试将它们分别写成两个因式的乘积,并与同伴交流。平方差公式反过来就是说:两个数的平方差,等于这两个数的和与这两个数的差的积a²-b²=(a+b)(a-b)因式分解平方差公式:(a+b)(a-b)=a²-b²整式乘法引例:对照平方差公式怎样将下面的

2、多项式分解因式1)m²-162)4x²-9y²m²-16=m²-4²=(m+4)(m-4)a²-b²=(a+b)(a-b)4x²-9y²=(2x)²-(3y)²=(2x+3y)(2x-3y)925116(4)–9x²+4解:1)25-16x²=5²-(4x)²=(5+4x)(5-4x)例1.把下列各式分解因式(1)25-16x²(2)9a²-b²(3)—x²-—y²解:2)9a²-b²=(3a)²-(b)²=(3a+b)(3a-b)例2.把下列各式因式分解(x+z)²-(y+z)²9(m+n)²-(m-n)²2x³-8

3、x(x+y+z)²-(x–y–z)²5)—a²-212解:1.原式=[(x+z)+(y+z)][(x+z)-(y+z)]=(x+y+2z)(x-y)解:3.原式=2x(x²-4)=2x(x+2)(x-2)解:4.原式=[(x+y+z)+(x-y-z)]×[(x+y+z)-(x-y-z)]=2x(2y+2z)=4x(y+z)解:2.原式=[3(m+n)]²-(m-n)²=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n)用平方差公式进行简便计算:38²-37

4、²2)213²-87²3)229²-171²4)91×89解:1)38²-37²=(38+37)(38-37)=75213²-87²=(213+87)(213-87)=300×126=37800解:3)229²-171²=(229+171)(229-171)=400×58=23200解:4)91×89=(90+1)(90-1)=90²-1=8100-1=8099注意点:1.运用平方差公式分解因式的关键是要把分解的多项式看成两个数的平方差,尤其当系数是分数或小数时,要正确化为两数的平方差。2.公式a²-b²=(a+b)(

5、a-b)中的字母a,b可以是数,也可以是单项式或多项式,要注意“整体”“换元”思想的运用。3.当要分解的多项式是两个多项式的平方时,分解成的两个因式要进行去括号化简,若有同类项,要进行合并,直至分解到不能再分解为止。4.运用平方差分解因式,还给某些运算带来方便,故应善于运用此法,进行简便计算。5.在因式分解时,若多项式中有公因式,应先提取公因式,再考虑运用平方差公式分解因式。巩固练习:1.选择题:1)下列各式能用平方差公式分解因式的是()4X²+y²B.4x-(-y)²C.-4X²-y³D.-X²+y²-4a²+1分解

6、因式的结果应是()-(4a+1)(4a-1)B.-(2a–1)(2a–1)-(2a+1)(2a+1)D.-(2a+1)(2a-1)2.把下列各式分解因式:1)18-2b²2)x4–1DD1)原式=2(3+b)(3-b)2)原式=(x²+1)(x+1)(x-1)做一做2、如图,在一块边长为acm的正方形的四角,各剪去一个边长为bcm的正方形,求剩余部分的面积。如果a=3.6,b=0.8呢?ab

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。