欢迎来到天天文库
浏览记录
ID:61982076
大小:3.88 MB
页数:34页
时间:2021-04-08
《专题3.12 综合求证多变换,几何结合代数算-2020届高考数学压轴题讲义(解答题)(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【题型综述】综合求证问题有以下类型:(1)证明直线过定点,设出直线方程,利用题中的条件与设而不求思想找出曲线方程中参数间的关系,即可求出定点.(2)定值问题就是证明一个量或表达式的值与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表示求证目标,通过运算得知求证目标的取值与变化的量无关.当使用直线的斜率和截距表示直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.(3)恒等式的证明问题,将恒等式转化为常见的弦长、距离之比或向量关系等问题,进而转化为直线与圆锥曲线的交点坐标问题,
2、利用设而不求思想及韦达定理即可证明.(4)几何图形性质的证明,利用几何图形性质与向量运算的关系,转化为向量的运算或直线的斜率关系,再用直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.【典例指引】类型一证明分点问题例1【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A为线段BM的中点..直线ON的方程为,点B的坐标为.因为,所以.学科*网故A为线段BM的中点.类型
3、二几何证明问题例2.【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于,两点,与相交于,两点,且与同向(ⅰ)若,求直线的斜率(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形(ii)由得,∴在点处的切线方程为,即,令,得,即,∴,而,于是,因此是锐角,从而是钝角.,故直线绕点旋转时,总是钝角三角形.学科*网类型三等式证明例3【2015高考上海,理21】已知椭圆,过原点的两条直线和分别于椭圆交于、和、,记得到的平行四边形的面积为.(1)设,,用、的坐标表示点到直线的距离,并证明;(2)设
4、与的斜率之积为,求面积的值.类型四长度关系证明例4.【2016高考四川】已知椭圆E:的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:.【扩展链接】1.圆锥曲线以P(x0,y0)(y0≠0)为中点的弦所在直线的斜率分别是:k=-(椭圆+=1),k=(双曲线-=1),k=(抛物线y2=2px),其中k=(x1≠x2),(x1,y1),(x2,y2)为弦端点的坐标.2.给出,等于已知,即是直角,给出,等于已知是钝角,给出,等于已知
5、是锐角;3.在平行四边形中,给出,等于已知是菱形;4.在平行四边形中,给出,等于已知是矩形;【新题展示】1.【2019宁夏吴忠中学一模】在平面直角坐标系中,椭圆的中心为原点,焦点,在轴上,离心率为.过的直线交于,两点,且的周长为.(1)求椭圆的方程;(2)圆与轴正半轴相交于两点,(点在点的左侧),过点任作一条直线与椭圆相交于,两点,连接,,求证.【思路引导】(1)设椭圆C的方程为(a>b>0),由离心率为,得,又△PQF2的周长为4a=,得a=2,进而求出椭圆方程;(2)把y=0代入圆的方程求出x的值,确定M与N的坐标,当AB⊥x轴时,由椭圆的对称性得证;当AB与x轴不垂直时
6、,设直线AB为y=k(x﹣1),与椭圆方程联立得到关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用韦达定理表示出x1+x2,x1x2,进而表示出直线AN与直线BN斜率之和为0,即可得证.【解析】(1)设椭圆C的方程为(a>b>0).因为离心率为,所以,解得,即.又△PQF2的周长为
7、PQ
8、+
9、PF2
10、+
11、QF2
12、=(
13、PF1
14、+
15、PF2
16、)+(
17、QF1
18、+
19、QF2
20、)=2a+2a=4a,所以又△PQF2的周长为,即a=2,b=2,所以椭圆C的方程为.(2)把y=0代入+(y-2)2=,解得x=1或x=4,因为点在点的左侧,即点M(1,0),N(4,0).①当A
21、B⊥x轴时,由椭圆的对称性可知∠ANM=∠BNM.②当AB与x轴不垂直时,可设直线AB的方程为y=k(x-1).联立(k2+2)x2-2k2x+k2-8=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.因为y1=k(x1-1),y2=k(x2-1),所以kAN+kBN=+=+=.因为(x1-1)(x2-4)+(x2-1)(x1-4)=2x1x2-5(x1+x2)+8=+8=,所以kAN+kBN=0,所以∠ANM=∠BNM,综上所述,∠ANM=∠BNM.2.【2019福建厦门3月质检
此文档下载收益归作者所有