高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算

高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算

ID:29663374

大小:723.06 KB

页数:23页

时间:2018-12-21

高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算_第1页
高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算_第2页
高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算_第3页
高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算_第4页
高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算_第5页
资源描述:

《高考数学 玩转压轴题 专题3.12 综合求证多变换几何结合代数算》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题3.12综合求证多变换几何结合代数算【题型综述】综合求证问题有以下类型:(1)证明直线过定点,设出直线方程,利用题中的条件与设而不求思想找出曲线方程中参数间的关系,即可求出定点.(2)定值问题就是证明一个量或表达式的值与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表示求证目标,通过运算得知求证目标的取值与变化的量无关.当使用直线的斜率和截距表示直线方程时,在解题过程中要注意建立斜率和截距之间的关系,把双参数问题化为单参数问题解决.(3)恒等式的证明问

2、题,将恒等式转化为常见的弦长、距离之比或向量关系等问题,进而转化为直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.(4)几何图形性质的证明,利用几何图形性质与向量运算的关系,转化为向量的运算或直线的斜率关系,再用直线与圆锥曲线的交点坐标问题,利用设而不求思想及韦达定理即可证明.【典例指引】类型一证明分点问题例1【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(Ⅰ)求抛

3、物线C的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A为线段BM的中点..直线ON的方程为,点B的坐标为.因为,所以.故A为线段BM的中点.类型二几何证明问题例2.【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于,两点,与相交于,两点,且与同向(ⅰ)若,求直线的斜率(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形(ii)由得,∴在点处的切线方程为,即,令,得,即,∴,而,于是,因此是锐角,从而是钝角.,故直线绕点旋转时,总是钝

4、角三角形.类型三等式证明例3【2015高考上海,理21】已知椭圆,过原点的两条直线和分别于椭圆交于、和、,记得到的平行四边形的面积为.(1)设,,用、的坐标表示点到直线的距离,并证明;(2)设与的斜率之积为,求面积的值.类型四长度关系证明例4.【2016高考四川】已知椭圆E:的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:.【扩展链接】1.圆锥曲线以P(x0,y0)(y

5、0≠0)为中点的弦所在直线的斜率分别是:k=-(椭圆+=1),k=(双曲线-=1),k=(抛物线y2=2px),其中k=(x1≠x2),(x1,y1),(x2,y2)为弦端点的坐标.2.给出,等于已知,即是直角,给出,等于已知是钝角,给出,等于已知是锐角;3.在平行四边形中,给出,等于已知是菱形;4.在平行四边形中,给出,等于已知是矩形;【同步训练】1.如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M在点N的下方),且

6、MN

7、=3.(1)求圆C的方程;(2)过点M任作一条直线与椭圆相交于两点A、B

8、,连接AN、BN,求证:∠ANM=∠BNM.【思路点拨】(1)设圆C的半径为r(r>0),依题意,圆心坐标为(2,r),根据

9、MN

10、=3,利用弦长公式求得r的值,可得圆C的方程.(2)把x=0代入圆C的方程,求得M、N的坐标,当AB⊥y轴时,由椭圆的对称性可知∠ANM=∠BNM,当AB与y轴不垂直时,可设直线AB的方程为y=kx+1,代入椭圆的方程,利用韦达定理求得KAB+KBN=0,可得∠ANM=∠BNM.综上所述,∠ANM=∠BNM.2.已知椭圆C:+=1(a>b>0)经过(1,1)与(,)两点.(1)求椭圆C的方程

11、;(2)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足

12、MA

13、=

14、MB

15、.求证:++为定值.【思路点拨】(1)把(1,1)与(,)两点代入椭圆方程解出即可.(2)由

16、MA

17、=

18、MB

19、,知M在线段AB的垂直平分线上,由椭圆的对称性知A、B关于原点对称.①若点A、B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点;同理,若点A、B是椭圆的长轴顶点,则点M在椭圆的一个短轴顶点;直接代入计算即可.②若点A、B、M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),则直线OM的方程为,设A(x1,y1),B(x2,y2),与

20、椭圆的方程联立解出坐标,即可得到=,同理,代入要求的式子即可.∴=,同理,所以=2×+=2,故=2为定值.3.在平面直角坐标系xOy中,动点p(x,y)(x≥0)满足:点p到定点F(,0)与到y轴的距离之差为.记动点p的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)过点F的直线交曲线C于A、B两点,过点A和原点O的直

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。