资源描述:
《椭圆的简单几何性质_1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、椭圆的简单几何性质标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系
2、x
3、≤a,
4、y
5、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c2复习:标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系
6、x
7、≤a,
8、y
9、≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.
10、a>ba2=b2+c2
11、x
12、≤b,
13、y
14、≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前复习练习:1.椭圆的长短轴之和为18,焦距为6,则椭圆的标准方程为()2、下列方程所表示的曲线中,关于x轴和y轴都对称的是()A、X2=4YB、X2+2XY+Y=0C、X2-4Y2=XD、9X2+Y2=4CD3、在下列每组椭圆中,哪一个更接近于圆?①9x2+y2=36与x2/16+y2/12=1;x2/16+y2/12=1②x2+9y2=36与x2/6+y2/10=
15、1x2/6+y2/10=1例1;求椭圆9x2+16y2=144的长半轴、短半轴长、离心率、焦点、顶点坐标,并画出草图。例2.已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。答案:分类讨论的数学思想练习1、若椭圆的焦距长等于它的短轴长,则其离心率为。2、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心率为。3、若椭圆的的两个焦点把长轴分成三等分,则其离心率为。4、若椭圆+=1的离心率为0.5,则:k=_____5、若某个椭圆的长轴、短轴、焦距依次成
16、等差数列,则其离心率e=__________(±a,0)a(0,±b)b(-a,0)a+c(a,0)a-c6、例3如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B距地面2348km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).地球例3如图,我国发射的第一颗人造地球卫星的运行轨道,是以地心(地球的中心)F2为一个焦点的椭圆,已知它的近地点A(离地面最
17、近的点)距地面439km,远地点B距地面2348km.并且F2、A、B在同一直线上,地球半径约为6371km,求卫星运行的轨道方程(精确到1km).XOF1F2ABXXY解:以直线AB为x轴,线段AB的中垂线为y轴建立如图所示的直角坐标系,AB与地球交与C,D两点。由题意知:AC=439,BD=2384,DC2、2005年10月17日,神州六号载人飞船带着亿万中华儿女千万年的梦想与希望,遨游太空返回地面。其运行的轨道是以地球中心为一焦点的椭圆,设其近地点距地面m(km),远地点距地面n(km),地
18、球半径R(km),则载人飞船运行轨道的短轴长为()A.mn(km)B.2mn(km)D4、