欢迎来到天天文库
浏览记录
ID:60777723
大小:1.71 MB
页数:21页
时间:2020-12-18
《2020届贵州省遵义市绥阳县高三一模数学(理)试题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2020届贵州省遵义市绥阳县高三一模数学(理)试题一、单选题1.已知集合,,,则()A.B.C.D.【答案】D【解析】根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.2.已知复数(为虚数单位)在复平面内对应的点的坐标是()A.B.C.D.【答案】A【解析】直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在复平面内对应的点的坐标是.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.3.已知
2、向量,,且与的夹角为,则()A.B.1C.或1D.或9【答案】C【解析】由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.4.已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为()A.B.C.2D.4【答案】A【解析】由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,,,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题5.
3、为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差【答案】C【解析】根据题目所给图像,填写好表格,由表格数据选出正确选项.【详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【点睛】本题考
4、查统计问题,考查数据处理能力和应用意识.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】首先把三视图转换为几何体,进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为下面为一个半球,上面为一个直三棱锥体构成的组合体.如图所示:下面的球的半径为2,直三棱锥的底面为腰长为2的等腰直角三角形,高为2,故.故选:A.【点睛】本题考查的知识要点:三视图和几何体的转换的应用,几何体的体积和表面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档
5、题.7.若函数在处有极值,则在区间上的最大值为()A.B.2C.1D.3【答案】B【解析】根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.8.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A.B.
6、C.D.【答案】D【解析】由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.9.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同
7、的数,其和等于16的概率为()A.B.C.D.【答案】B【解析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.10.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,
8、丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲B.乙C.丙D.丁【答案】C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;
此文档下载收益归作者所有