欢迎来到天天文库
浏览记录
ID:59329968
大小:935.50 KB
页数:2页
时间:2020-09-04
《2012~2013九(下)数学 相似相似三角形的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012~2013九(下)数学相似相似三角形的应用①班级:姓名:得分:1、在阳光下,身高1.68m的小强在地面上的影长为2m,在同一时刻,测得学校的旗杆在地面上的影长为18m.则旗杆的高度为(精确到0.1m).2、如图,在河两岸分别有A、B两村,现测得A、B、D在一条直线上,A、C、E在一条直线上,BC//DE,DE=90米,BC=70米,BD=20米。则A、B两村间的距离为。3、(06湖州)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底
2、(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为________米(精确到0.1米)。4、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。5、小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面
3、的高度DC=1.6米,请你帮助小强计算出教学楼的高度。(根据光的反射定律:反射角等于入射角)6、某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB。7、如图,甲楼AB高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上有多高?8、为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长
4、为1米,然后拿竹竿向远离路灯方向走了4米(BB‘),再把竹竿竖立在地面上,测得竹竿的影长(B‘C‘)为1.8米,求路灯离地面的高度.9、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路灯杆AB的高度。ECGBFD九(下)数学相似练习(6)--相似三角形的应用②ABDCE1、如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的
5、距离为___________。2、在长8cm,宽4cm的矩形中截去一个矩形(阴影部分)使留下的矩形与矩形相似,那么留下的矩形的面积为____cm2。3、如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是(A)S1>S2(B)S1=S2(C)S16、又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。6、如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6m,梯上点D距墙1.4m,BD长0.55m,求该梯子的长。MMNEMBCFDANEBCFDANEBCFDA(N)MEBCFDA7、如图①,梯形ABCD中,AD∥BC,E、F分别在AB、CD上,且EF∥BC,EF分别交BD、AC于M、N。(1)求证:ME=NF;(2)当EF向上平移至②③④各个位置时,其7、他条件不变,(1)的结论是否还成立?请分别证明你的判断。8、如图,抛物线与轴交于、两点(点在点的左侧),抛物线上另有一点在第一象限,满足∠为直角,且恰使△∽△.(1)求线段的长.(2)求该抛物线的函数关系式.(3)在轴上是否存在点,使△为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.解:9、如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD与BC相等)去量,若测得OA:OD=OB:OC=3:1,CD=5cm,你能求零件的壁厚x吗?10、如图,A为河对岸一点,AB⊥BC,DC⊥BC,
6、又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。6、如图,AB是斜靠在墙上的长梯,梯脚B距墙脚1.6m,梯上点D距墙1.4m,BD长0.55m,求该梯子的长。MMNEMBCFDANEBCFDANEBCFDA(N)MEBCFDA7、如图①,梯形ABCD中,AD∥BC,E、F分别在AB、CD上,且EF∥BC,EF分别交BD、AC于M、N。(1)求证:ME=NF;(2)当EF向上平移至②③④各个位置时,其
7、他条件不变,(1)的结论是否还成立?请分别证明你的判断。8、如图,抛物线与轴交于、两点(点在点的左侧),抛物线上另有一点在第一象限,满足∠为直角,且恰使△∽△.(1)求线段的长.(2)求该抛物线的函数关系式.(3)在轴上是否存在点,使△为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.解:9、如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD与BC相等)去量,若测得OA:OD=OB:OC=3:1,CD=5cm,你能求零件的壁厚x吗?10、如图,A为河对岸一点,AB⊥BC,DC⊥BC,
此文档下载收益归作者所有