弹性力学及有限单元法复习提纲采.doc

弹性力学及有限单元法复习提纲采.doc

ID:59200699

大小:15.00 KB

页数:2页

时间:2020-09-10

弹性力学及有限单元法复习提纲采.doc_第1页
弹性力学及有限单元法复习提纲采.doc_第2页
资源描述:

《弹性力学及有限单元法复习提纲采.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、弹性力学及有限单元法复习提纲采矿10级1.材料力学和弹性力学在所研究的内容上有哪些共同点和哪些不同点?求解问题的方法上有何主要区别?2.什么是弹性,什么是塑性?弹性力学有哪几条基本假设?3.弹性力学的平衡微分方程是根据什么条件推导出来的?其物理意义是什么?4.为什么要引入弹性力学的几何方程?几何方程是如何推导出来的?其物理意义是什么?5.什么是物理方程?其表达式如何?物理意义是什么?6.什么是平面应力?平面应变?平面应力和平面应变的差别在哪些地方?所需要求解的问题,差别又在何处?它们各自相应的物理方程有什么不同?7.弹性力学问题的基本方程有哪几组?8.什么是应力边界条件?位移边界条件?混合边界

2、条件?9.什么是按照应力求解和按照位移求解?求解方法和过程有哪些区别?10.什么是相容方程?相容方程的物理意义是什么?11.什么是应力函数?双谐方程?如何推导出双谐方程?试写出双谐方程的数学表达式。12.应力函数与应力分量间有什么样的关系?如何求解双谐方程?13.什么是圣文南原理?在弹性力学中有何意义?14.什么是逆解法?半逆解法?使用逆解法和半逆解法求解时,应如何入手,按照哪几个步骤来获得解答?15.由直角坐标下的多项式解可以获得哪些有意义的弹性力学解?如何计算应力、应变和位移?16.由弹性力学所获得的受分布荷载的简支梁以及受纯弯曲的简支梁的解答,与材料力学所得到的解答有哪些共同之处和哪些不

3、同之处?由此可以说明哪些问题?17.如何推导出极坐标下弹性力学的平衡微分方程,几何方程和双谐方程?极坐标下弹性力学的基本方程与直角坐标下的方程有哪些区别?18.为什么可以求出极坐标下弹性力学方程的轴对称问题的通解?如何求出?可以解答哪些问题?19.带圆孔的无限大板、半平面体在边界上受集中力、对径受压的圆盘等问题的解答,是如何获得的?这些解答各可以解决哪些工程问题?20.什么是有限单元法?有限单元法求解思想和求解过程与弹性力学有哪些不同?21.使用三角形3节点单元时,单元划分时有哪些注意事项?22.什么是位移插值函数?为什么要引入位移插值函数?23.什么是形函数?如何推导形函数?24.什么是应变

4、矩阵?应力矩阵?节点位移列阵?25.什么是常应变单元?常应力单元?为什么三角形3节点单元是常应变单元和常应力单元?26.什么是弹性变形比能?单元刚度矩阵是如何推导出的?总刚度矩阵如何得出?27.什么是最小势能原理?如何根据最小势能原理推导出有限单元法的基本方程?28.有限单元法的基本方程是一个什么样的方程?如何求解?此方程的大小(总刚度矩阵的大小)与什么有关?29.与三角形单元相比,矩形单元有什么优点和缺点?30.为什么要引入任意四边形4节点单元?与矩形四节点单元相比,任意四边形四节点单元有什么优点和缺点?为什么在任意四边形4节点单元中要引入坐标变换?1.与三角形3节点单元相比,三角形6节点单

5、元有什么优点和缺点?2.与任意四边形4节点单元相比,曲边四边形8节点单元有哪些优点和缺点?3.使用任意四边形4节点单元和曲边四边形8节点单元时,单元划分时有哪些注意事项?4.三角形3节点单元、三角形6节点单元、任意四边形4节点单元、曲边四边形8节点单元,应变矩阵和单元刚度矩阵各为多大?5.试写出有限单元法平面问题中,计算单元刚度矩阵的积分表达式,以及对应于各种单元时,此积分表达式中各矩阵以及单元刚度矩阵的大小。6.什么是前处理与后处理?有什么意义?7.说明将有限单元法应用于地下岩土工程问题时的计算模型、边界条件以及单元划分等方面应采取的措施和方法。深埋巷道与浅埋巷道的边界条件应该有什么差别?计

6、算模型外边界的尺寸应该取多大?应该取何种形式的边界条件?8.什么是等值线图?云图?矢量图?这些图件在有限单元法计算结果的处理中有何用处?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。