全等三角形专题一.pdf

全等三角形专题一.pdf

ID:58316105

大小:131.11 KB

页数:5页

时间:2020-09-11

全等三角形专题一.pdf_第1页
全等三角形专题一.pdf_第2页
全等三角形专题一.pdf_第3页
全等三角形专题一.pdf_第4页
全等三角形专题一.pdf_第5页
资源描述:

《全等三角形专题一.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、全等三角形专题一全等三角形得定义及性质1.如图,已知点A、B、C、D在同一条直线上,△AEC≌△DFB,如果AD=37,BC=15,那么AB得长为()A。10B.11C。12D、132.已知△ABC得三边长分别为6,7,10,△DEF得三边长分别为6,3x-2,2x-1,若两个三角形全等,则x=。3.一个三角形得三条边长分别为3,5,7,另一个三角形得三边长分别为3,3x-2y,x+2y,若这两个三角形全等,则x+y=。4.如图,已知△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D为AB得中点,点P在线段BC上以3cm/s得速度由B点向C点运动,同时,点Q在线段CA上由点C

2、向点A以cm/s得速度运动,设运动时间为ts。(1)求CP得长(用含t得式子表示);(2)若以C、P、Q为顶点得三角形与以B、D、P为顶点得三角形全等,且∠B与∠C就是对应角,求得值、5.如图,在△ABC中,D、E分别就是边AC、BC上得点,若△ADB≌△EDB≌△EDC,则∠C得度数为()A、15?B。20?C。25?D.30?6.如图,△ABC≌△ADE,BC得延长线交DE于点F,∠B=∠D=25?,∠ACB=∠AED=105?,∠DAC=10?,则∠DFB为()A。40?B.50?C、55?D.60?7。如图,已知BE就是△ABC得高,P为BE延长线上一点,Q为BE上一点,△PAB

3、≌△AQC,请猜想AP与AQ得位置关系,并证明您得结论。8.如图,将△ABC绕点B旋转一定角度,得到△DBE,若∠AGF=20?,∠ABE=3∠EBC,求∠DBE得度数9.如图,△ABC≌△ADE,BC得延长线过点E并交AD于点F,∠ACD=∠AED=105?,∠CAD=10?,∠B=50?,求∠DEF得度数。SSS判定1.如图,已知AB=AD,CB=CD,求证:∠ADC=∠ABC。2.如图,已知线段AB、CD相交于点O,AD、CB得延长线交于点E,OA=OC,EA=EC,求证:∠A=∠C。SAS判定1。已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD与△BCD,且

4、CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F、(1)如图①,若∠ACD=,则∠AFB得度数就是多少?(用含得式子表示)(2)如图①中得△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中得一条线段上),如图②,试探究∠AFB与得数量关系,并予以证明。2.(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90?,E、F分别就是边BC、CD上得点,且∠EAF=∠BAD,求证:EF=BE+FD、(2)如图②,当(1)中得条件“∠B=∠D=90?”改成“∠B+∠D=180?”,其她条件都不变,(1)中得结论就是否依然成立?(3)如图③,在四边形ABCD中,AB

5、=AD,∠B+∠ADC=180?,E、F分别就是边BC、CD延长线上得点,且∠EAF=∠BAD,请探究EF、BE、FD之间得数量关系,并说明理由。3.在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180?,求证:DA平分∠CDE。4、如图,已知AC//BD,AE、BF分别平分∠CAB与∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。5.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB、AC、CD三者之间得数量关系,并说明理由。6.如图,CE、CB分别就是△ABC与△ADC得中线,且∠ACB=∠ABC,求证:CD=2CE。7、如图,AB=

6、AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC得中点,求证:DE=2AM。8.证明:如果两个三角形有两边与第三边上得中线对应相等,那么这两个三角形全等。已知:如图,在△ABC与△中,AB=,AC=,AD与分别为中线,AD=、求证:△ABC≌△ASA及AAS判定1。如图,已知AB=AD,∠C=∠E,∠1=∠2,求证:△ABC≌△ADE。2。如图,BE、CD相交于点F,且∠B=∠C,∠1=∠2,求证:DF=EF。3.如图,AC=BC,∠ACB=90?,点D为BC得中点,BE⊥BC,CE⊥AD,垂足分别为点B、G,那么AD=CE,BD=BE,这两个结论对不对?为什么?4.如图,在Rt△A

7、BC中,∠C=90?,AC=8,BC=6,P、Q就是边AC、BC上得两个动点,PD⊥AB于点D,QE⊥AB于点E,设P、Q运动时间就是t秒(t>0)。(1)若点P、Q分别从A、B两点同时出发,沿AC、BC向点C匀速运动,运动速度都为每秒1个单位长度,其中一点到达终点C后,另一点也随之停止运动,在运动过程中,△APD与△QBE就是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位长度得速度向点A匀速运动,到达点A后

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。