江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc

江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc

ID:56873015

大小:529.00 KB

页数:7页

时间:2020-07-17

江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc_第1页
江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc_第2页
江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc_第3页
江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc_第4页
江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc_第5页
资源描述:

《江苏省栟茶高级中学2012届高三数学考前热点专题训练(5) 函数与导数、不等式1 苏教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012届考前热点专题训练(5)(函数与导数、不等式1)班级____学号_____姓名_______一、填空题1.已知函数f(x)=,若f(a)+f(-a)=2012,则实数a的值等于__±2011_____.2.设的奇函数,则使的X的取值范围是(一1,0).3.若函数f(x)=在区间(m,2m+1)上是单调递增函数,则m的取值范围为____(-1,0]___.4.已知函数(其中,为常数),若的图象如右图所示,则函数在区间[-1,1]上的最大值是.5.函数的定义域为,值域为[0,2],则区间的长的最大值是.6.已知函数的最大值为M,最小值为m,

2、则的值为______.7.设正实数满足,则的最小值为________.8.已知函数,若,且,则的最小值是_-16_________.9.已知,则的最小值为.10.已知函数f(x)=ln(x+),若实数a,b满足f(a)+f(b-1)=0,则a+b等于_____1_____.11.已知是实数且.若,那么=_2_,此时=__.12.设函数,对任意,都有在恒成立,则实数的取值范围是__________.-7-用心爱心专心13.已知实数x、y满足,若不等式恒成立,则实数a的最小值是__________.14.已知定义域为D的函数,对任意,存在正数K,都

3、有成立,则称函数是D上的“有界函数”.已知下列函数:①;②;③;④,其中是“有界函数”的是①②④.(写出所有满足要求的函数的序号)二、解答题15.设函数是定义域为的奇函数.(1)求值;(2)若,试判断函数单调性并求使不等式恒成立的的取值范围;(3)若,且,在上的最小值为,求的值.15.解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1-(k-1)=0,∴k=2,(2)单调递减,单调递增,故f(x)在R上单调递减。不等式化为恒成立,,解得(3)∵f(1)=,,即∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2

4、m(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,∵x≥1,∴t≥f(1)=,令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥)若m≥,当t=m时,h(t)min=2-m2=-2,∴m=2若m<,当t=时,h(t)min=-3m=-2,解得m=>,舍去-7-用心爱心专心综上可知m=2.16.已知函数.(1)若,求不等式的解集;(2)当方程恰有两个实数根时,求的值;(3)若对于一切,不等式恒成立,求的取值范围.16.解:(1)由得当时,恒成立∴当时,得或又∴所以不等式的解集为(2)由得令

5、由函数图象知两函数图象在y轴右边只有一个交点时满足题意,即由得由图知时方程恰有两个实数根(3)当时,,,,所以当时①当时,,即,令时,,所以时,,所以,-7-用心爱心专心所以②当时,,即所以,综上,的取值范围是17.已知集合.其中为正常数.(1)设,求的取值范围.(2)求证:当时不等式对任意恒成立;(3)求使不等式对任意恒成立的的范围.17.解:(1),当且仅当时等号成立,故的取值范围为.(2)变形,得.由,又,,∴在上是增函数,所以.即当时不等式成立.(3)令,则,即求使对恒成立的的范围.-7-用心爱心专心由(2)知,要使对任意恒成立,必有,

6、因此,∴函数在上递减,在上递增,要使函数在上恒有,必有,即,解得.18.对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1)判断函数是否为“()型函数”,并说明理由;(2)已知函数是“(1,4)型函数”,当时,都有成立,且当时,,若,试求的取值范围.18.解:(1)函数是“()型函数”因为由,得,所以存在这样的实数对,如(2)由题意得,,所以当时,,其中,而时,,且其对称轴方程为,①当,即时,在上的值域为,即,则在上的值域为,由题意得,此时无解②当,即时,的值域为,即,所以则在上的值域为,-7-用心爱心

7、专心则由题意得且,解得③当,即时,的值域为,即,则在上的值域为=,则,解得.综上所述,所求的取值范围是19.已知函数()在区间上有最大值和最小值.设.(1)求、的值;(2)若不等式在上有解,求实数的取值范围;(3)若有三个不同的实数解,求实数的取值范围.19.解:(1),因为,所以在区间上是增函数,故,解得.(2)由已知可得,所以可化为,化为,令,则,因,故,-7-用心爱心专心记,因为,故,所以的取值范围是.(3)原方程可化为,令,则,有两个不同的实数解,,其中,,或,.记,则①或②解不等组①,得,而不等式组②无实数解.所以实数的取值范围是.-

8、7-用心爱心专心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。