资源描述:
《高中数学《样本估计总体的数字特征》导学案(二)新人教版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、江西省吉安市井冈山大学附中高中数学新人教版必修三《样本估计总体的数字特征》导学案(二)(一)问题提出1、如何利用频率分布直方图估计众数、中位数、平均数。2、平均数相同的两组数据是否没有差距?3、有甲、乙两种钢筋,现从中各抽取一个标本(如下表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为125.甲110120130125120125135125135125乙115100125130115125125145125145哪种钢筋的质量较好?4、某种子公司为了在当地推行两种新水稻品种,对甲、乙两种水稻进行了连续7年的种植对比实验,年亩产量分别如下:(千克)甲:
2、600,880,880,620,960,570,900(平均773)乙:800,860,850,750,750,800,700(平均787)请你用所学统计学的知识,说明选择哪种品种推广更好?5、如何考查样本数据的分散程度的大小呢?把数据在坐标系中刻画出来,是否能直观地判断数据的离散程度?讨论结果:1、2略.3、乙样本的最小值100低于甲样本的最小值110,乙样本的最大值145高于甲样本的最大值135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定.我们把一组数据的最大值与最小值的差称为极差.由上图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定.运用极差对两
3、组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论.4、选择的依据应该是,产量高且稳产的品种,所以选择乙更为合理.5、把问题(3)中的数据在坐标系中刻画出来.我们可以很直观地知道,乙组数据比甲组数据更集中在平均数的附近,即乙的分散程度小,如何用数字去刻画这种分散程度呢?考察样本数据的分散程度的大小,最常用的统计量是方差和标准差。在刻画样本数据的离散程度上,方差与标准差是一样的.但在解决实际问题时,一般多采用标准差.需要指出的是,现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.如何求得总体的平均数和标准差呢?通常的做法是用样本的平
4、均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.变式训练1甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8变式训练2为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差.天数151—180181—210211—
5、240241—270271—300301—330331—360361—390灯泡数1111820251672(课本36-37:合作交流)(三)练案(1)在方差计算公式s2=[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示().A.数据的个数和方差B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数(2)下列说法中,正确的是().A.数据5,4,4,3,5,2的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数(
6、3)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为____________.(4)若给定一组数据x1,x2,…,xn,方差为s2,则ax1,ax2,…,axn的方差是____________.(5)从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S12=13.2,S22=26.26,则().A.甲班10名学生的成绩比乙班10名学生的成绩整齐B.乙班10名学生的成绩比甲班10名学生的成绩整齐C.甲、乙两班10名学生的成绩一样整齐D.不能比较甲、
7、乙两班10名学生成绩的整齐程度(6)下列说法正确的是()。A.根据样本估计总体,其误差与所选择的样本容量无关B.方差和标准差具有相同的单位C.从总体中可以抽取不同的几个样本D.如果容量相同的两个样本的方差满足S12