资源描述:
《导数知识点归纳及其应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数知识点归纳及其应用●知识点归纳一、相关概念1.导数的概念函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’
2、。即f(x)==。说明:(1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。(2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤:①求函数的增量=
3、f(x+)-f(x);②求平均变化率=;③取极限,得导数f’(x)=。例:设f(x)=x
4、x
5、,则f′(0)=.[解析]:∵∴f′(0)=02.导数的几何意义函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。例:在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是()A.3B.2C.1D.0[解析]:切线的斜率为又切线的倾斜角小于,即故解得:故没有坐标为整数的点3.导数的物理意义如果物体运动的规律是s=s
6、(t),那么该物体在时刻t的瞬间速度v=(t)。如果物体运动的速度随时间的变化的规律是v=v(t),则该物体在时刻t的加速度a=v′(t)。例。汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是()stOA.stOstOstOB.C.D.答:A。练习:已知质点M按规律做直线运动(位移单位:cm,时间单位:s)。(1)当t=2,时,求;(2)当t=2,时,求;(3)求质点M在t=2时的瞬时速度。答案:(1)8.02(2)8.002;(3)8二、导数的运算1.基本函数的导数公式:①(C为常数)②③;④;⑤⑥;⑦;⑧.例1:下列求导
7、运算正确的是()A.(x+B.(log2x)′=C.(3x)′=3xlog3eD.(x2cosx)′=-2xsinx[解析]:A错,∵(x+B正确,∵(log2x)′=C错,∵(3x)′=3xln3D错,∵(x2cosx)′=2xcosx+x2(-sinx)例2:设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=()A.sinx B.-sinx C.cosxD.-cosx[解析]:f0(x)=sinx,f1(x)=f0′(x)=cosx,f2(x)=f1′(x)=-sinx,f3(x)=f2′(x
8、)=-cosx,f4(x)=f3′(x)=sinx,循环了则f2005(x)=f1(x)=cosx2.导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数:法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:(v0)。例:设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,>0.且g(3)=0.则不等式f(x)g(x)<0的解
9、集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[解析]:∵当x<0时,>0,即∴当x<0时,f(x)g(x)为增函数,又g(x)是偶函数且g(3)=0,∴g(-3)=0,∴f(-3)g(-3)=0故当时,f(x)g(x)<0,又f(x)g(x)是奇函数,当x>0时,f(x)g(x)为减函数,且f(3)g(3)=0故当时,f(x)g(x)<0故选D3.复合函数的导数形如y=f的函数称为复合函数。复合函数求导步骤:分解——>求导——>回代。法则:y'
10、=y'
11、·u'
12、或者.练习:求下列各函数的导数:(1)(
13、2)(3)(4)解:(1)∵∴y′(2)y=(x2+3x+2)(x+3)=x3+6x2+11x+6,∴y′=3x2+12x+11.(3)∵y=∴(4),∴三、导数的应用1.函数的单调性与导数(1)设函数在某个区间(a,b)可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数。(2)如果在某区间内恒有,则为常数。例:函数是减函数的区间为()A.B.C.D.(0,2)[解析]:由<0,得0