欢迎来到天天文库
浏览记录
ID:52698547
大小:621.93 KB
页数:8页
时间:2020-03-29
《导数及其应用导学案(题型归纳、复习).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第三章导数及其应用(复习)学习目标提高学生综合、灵活运用导数的知识解决有关函数问题的能力.学习过程一、课前准备1.导数的几何意义:___________________________________________________2导数的定义:设函数在处附近有定义,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即3切线:是曲线上点()处的切线的斜率因此,如果在点可导,则曲线在点()处的切线方程为3导函数(导数):如果函数在开区间内的每点处都有导数,此时对于
2、每一个,都对应着一个确定的导数,从而构成了一个新的函数,称这个函数为函数在开区间内的导函数,简称导数,4常见函数的导数公式:1.;2.;3.;4.;;5.;8和差的导数:.9积的导数:,10商的导数:1.若,求82.下列函数的导数①②※典型例题1.求曲线的切线例1:求曲线在点(1,1)处的切线方程.〖跟踪练习〗1、已知直线是的切线,则切点坐标为________2、函数的图像在处的切线在x轴上的截距为_____________2.利用导数研究函数的单调性1.利用导数求函数的单调区间(1)求;(2)确定在内符号;(3)若在
3、上恒成立,则在上是增函数;若在上恒成立,则在上是减函数1设函数,其中常数(Ⅰ)讨论的单调性;8〖跟踪练习〗1、已知函数,.①讨论函数的单调区间;②设函数在区间内是减函数,求的取值范围.2、已知函数,讨论的单调性.2.已知函数的单调性,利用导数求参量例(08-湖北-7)若上是减函数,则的取值范围是CA.B.C.D.〖跟踪练习〗1、已知,函数在上时单调函数,则的取值范围是____________+2、已知函数.(1)若函数在区间上不单调,求的取值范围.83.利用导数研究函数的极值1极大值:一般地,设函数在点附近有定义,如果
4、对附近的所有的点,都有,就说是函数的一个极大值,记作,是极大值点2极小值:一般地,设函数在附近有定义,如果对附近的所有的点,都有,就说是函数的一个极小值,记作,是极小值点3极大值与极小值统称为极值(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(ⅳ)函数的极值点一定出现在区间的内部,区
5、间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4判别是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值5求函数的极值的步骤:(1)确定函数的定义区间,求导数(2)求方程的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查在方程根左右的值的符号,如果左正右负,那么在这个根处取得极大值;如果左负右正,那么在这个根处取得
6、极小值;如果左右不改变符号即都为正或都为负,则在这个根处无极值6函数的最大值和最小值:在闭区间上连续的函数在上必有最大值与最小值.⑴在开区间内连续的函数不一定有最大值与最小值.⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个7利用导数求函数的最值步骤:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值83:函数的
7、极值与最值例6:(08-山东-文)设函数,已知和为的极值点.(Ⅰ)求和的值;(Ⅱ)讨论的单调性;(Ⅲ)设,试比较与的大小.4:求参变量的范围例7.(08-安徽)设函数且(Ⅰ)求函数的单调区间;(Ⅱ)已知对任意成立,求实数的取值范围。8已知函数,其中(Ⅰ)若在处取得极值,求的值;(Ⅱ)求的单调区间;.(Ⅲ)若的最小值为1,求的取值范围.5:图象的交点形如函数图像与轴交点个数问题,应先求出,再求出极值并画出函数的图像,从而根据极值的符号判断交点的个数例9.(08-四川卷22)已知是函数的一个极值点.①求;②求函数的单调区间
8、;③若直线与函数的图象有3个交点,求的取值范围。86:切线综合例10.(07-全国Ⅱ-22)已知函数.(Ⅰ)求曲线在点M处的切线方程;(Ⅱ)设,如果过点可作曲线的三条切线,证明:.7、定积分的应用(1)概念设函数f(x)在区间[a,b]上连续,用分点a=x0
此文档下载收益归作者所有