欢迎来到天天文库
浏览记录
ID:56600581
大小:527.50 KB
页数:6页
时间:2020-06-29
《2012届高考数学压轴题跟踪训练9.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012届高考数学压轴题跟踪训练91.(本小题满分14分)已知动圆过定点,且与直线相切,其中.(I)求动圆圆心的轨迹的方程;(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;(II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知①(1)当时,即时,所
2、以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点(2)当时,由,得==-6-将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为即所以直线恒过定点所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点.2.(2012年衡水一模)(本小题满分12分)已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.(Ⅰ)求双曲线C2的方程;(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.解:(Ⅰ)设双曲线C2
3、的方程为,则故C2的方程为(II)将由直线l与椭圆C1恒有两个不同的交点得即①.由直线l与双曲线C2恒有两个不同的交点A,B得-6-解此不等式得③由①、②、③得故k的取值范围为3.(本小题满分12分)数列{an}满足.(Ⅰ)用数学归纳法证明:;(Ⅱ)已知不等式,其中无理数e=2.71828….(Ⅰ)证明:(1)当n=2时,,不等式成立.(2)假设当时不等式成立,即那么.这就是说,当时不等式成立.-6-根据(1)、(2)可知:成立.(Ⅱ)证法一:由递推公式及(Ⅰ)的结论有两边取对数并利用已知不等式得故上式从1到求和可得即(Ⅱ)证法二:由数学归纳法易
4、证成立,故令取对数并利用已知不等式得上式从2到n求和得因-6-故成立.4.(本小题满分12分)已知数列(1)证明(2)求数列的通项公式an.解:(1)方法一用数学归纳法证明:1°当n=1时,∴,命题正确.2°假设n=k时有则而又∴时命题正确.由1°、2°知,对一切n∈N时有方法二:用数学归纳法证明:1°当n=1时,∴;2°假设n=k时有成立,令,在[0,2]上单调递增,所以由假设有:即也即当n=k+1时成立,所以对一切-6-(2)下面来求数列的通项:所以,又bn=-1,所以-6-
此文档下载收益归作者所有