2010高三数学高考最后30天冲刺练习:解析几何.doc

2010高三数学高考最后30天冲刺练习:解析几何.doc

ID:56598099

大小:1.19 MB

页数:20页

时间:2020-06-29

2010高三数学高考最后30天冲刺练习:解析几何.doc_第1页
2010高三数学高考最后30天冲刺练习:解析几何.doc_第2页
2010高三数学高考最后30天冲刺练习:解析几何.doc_第3页
2010高三数学高考最后30天冲刺练习:解析几何.doc_第4页
2010高三数学高考最后30天冲刺练习:解析几何.doc_第5页
资源描述:

《2010高三数学高考最后30天冲刺练习:解析几何.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2010高考数学最后30天冲刺练习:解析几何例1、如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足的轨迹为曲线E.(I)求曲线E的方程;(II)过点A且倾斜角是45°的直线l交曲线E于两点H、Q,求

2、HQ

3、.【解】(1)∴NP为AM的垂直平分线,∴

4、NA

5、=

6、NM

7、.……2分又∴动点N的轨迹是以点C(-1,0),A(1,0)为焦点的椭圆.且椭圆长轴长为焦距2c=2.……………5分∴曲线E的方程为………………6分(2)直线的斜率∴直线的方程为…………………………8分由………………10分设,12分例2、已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛

8、物线的焦点,离心率为.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,,求的值.【解】(1)设椭圆C的方程为,用心爱心专心抛物线方程化为,其焦点为,椭圆C的一个顶点为,即,…………………………………………3分由,得,∴椭圆C的方程为.……………………………………………………6分(2)由(1)得,…………………………………………………………7分设,,显然直线的斜率存在,设直线的方程为,代入,并整理得,………………………………………9分∴.………………………………………10分又,,由,,得,,∴,………………………………………

9、………12分∴.………………14分例3、在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足.(1)求线段PP′中点M的轨迹C的方程;(2)过点Q(-2,0)作直线l与曲线C交于A、B两点,设N是过点,且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明文由.用心爱心专心【解】(1)设M(x,y)是所求曲线上的任意一点,P(x1,y1)是方程x2+y2=4的圆上的任意一点,则则有:得,轨迹C的方程为(1)当直线l的斜率不存在时,与

10、椭圆无交点.所以设直线l的方程为y=k(x+2),与椭圆交于A(x1,y1)、B(x2,y2)两点,N点所在直线方程为由由△=即…即,∴四边形OANB为平行四边形假设存在矩形OANB,则,即,即,于是有得…设,即点N在直线上.∴存在直线l使四边形OANB为矩形,直线l的方程为例4、设,椭圆方程为,抛物线方程为.如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点用心爱心专心的切线经过椭圆的右焦点.(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说

11、明理由(不必具体求出这些点的坐标).AyxOBGFF1图4【解析】(1)由得,当得,G点的坐标为,,,过点G的切线方程为即,令得,点的坐标为,由椭圆方程得点的坐标为,即,即椭圆和抛物线的方程分别为和;(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,同理以为直角的只有一个。若以为直角,设点坐标为,、两点的坐标分别为和,。关于的二次方程有一大于零的解,有两解,即以为直角的有两个,因此抛物线上存在四个点使得为直角三角形。例5、已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.(1)求椭圆的方程:(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。

12、求内切圆圆心的坐标;(3)若直线与椭圆交于、两点,证明直线与直线用心爱心专心的交点在直线上.【解析】(1)设椭圆方程为将、、代入椭圆E的方程,得解得.∴椭圆的方程(4分)(2),设边上的高为当点在椭圆的上顶点时,最大为,所以的最大值为.设的内切圆的半径为,因为的周长为定值6.所以,所以的最大值为.所以内切圆圆心的坐标为(10分)(3)法一:将直线代入椭圆的方程并整理.得.设直线与椭圆的交点,由根系数的关系,得.直线的方程为:,它与直线的交点坐标为同理可求得直线与直线的交点坐标为.下面证明、两点重合,即证明、两点的纵坐标相等:,用心爱心专心因此结论成立.综上可知.直线与直线

13、的交点住直线上.(16分)法二:直线的方程为:由直线的方程为:,即由直线与直线的方程消去,得∴直线与直线的交点在直线上.例6、设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A,B两点。(Ⅰ)求椭圆M的方程;(Ⅱ)求证

14、AB

15、=;(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求

16、AB

17、+

18、CD

19、的最小值。解:(Ⅰ)所求椭圆M的方程为…3分用心爱心专心(Ⅱ)当≠,设直线AB的斜率为k=tan,焦点F(3,0),则直线AB的方程为y=k(x–3)有(1+2k2)x2–12k2x+18(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。