欢迎来到天天文库
浏览记录
ID:55632725
大小:347.50 KB
页数:4页
时间:2020-05-21
《《微积分II》(第一层次)第二学期期中练习题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《微积分II》(第一层次)第二学期期中练习题一1.求直线绕z轴旋转一周的曲面的方程.2.求曲线在点(1,-1,2)处的切线方程.3.设由确定,求.4.求函数在点(1,1,1)处沿的方向导数.5.已知,求在点梯度.6.求曲面的切平面,使其通过直线.7.证明曲面上任何一点处的切平面与坐标面所围成的四面体的体积等于一个常数.8.求函数的极值.9.设为由所围曲面,求的内接长方体体积的最大值.10.求所围区域.11.求12.计算,其中D为第一象限内与轴,轴所围的闭区域.13.计算三重积分,其中为椭球体:.14.求曲环面:所界的物体体积.15.计算,其中C为螺旋线:的部分.16.计算曲线积分,式中与
2、为连续函数,为连接点的任意逐段光滑曲线,但与线段围成的面积为A的平面区域.《微积分II》(第一层次)第二学期期中练习题二1.求以为准线,以为顶点的锥面的直角坐标方程.2.设由确定,求3.求函数在点(1,2,-1)处沿的方向导数.4.求椭球面上某点处的切平面的方程,使平面过已知直线.5.求椭球面的切平面(),使其与三个坐标平面所围的立体的体积最小,并求最小值.6.求曲面上到原点最近的点.7.求8.设函数连续,满足,这里D为,求.9.求.10.计算三重积分,其中是球体.11.计算曲线积分.1.,其中的参数方程是:.2.,其中为由点沿到点的一段.12.计算曲面积分(2×10分=20分).1.求
3、,其中为.2.设为上半球面的上侧,计算.《微积分II》(第一层次)第二学期期中练习题三1.求直线在平面:上的投影直线的方程,并求绕轴旋转一周所成曲面的方程.2.函数由方程确定,求在点处的全微分.3.设函数由方程所确定,其中可微,计算并化简.4.求函数的极值.5.已知,求在点的梯度.6.求函数在点处沿空间曲线在的切向量的方向导数.7.试求一平面,使它通过空间曲线在处的切线,且与曲面相切.8.设常数,平面通过点,且在三个坐标轴上的截距相等.在平面位于第一卦限部分求一点,使得函数在P点处取最小值.9.已知曲面Σ的方程为,设为曲面Σ上的一点.1.求曲面Σ在点的切平面方程;2.求该切平面在各个坐标
4、轴上的截距之和.(10分)10.计算二重积分.11.计算二重积分其中而积分区域12.计算,其中D是由抛物线及直线所围成的区域.13.计算三重积分,其中V是椭球体.(10分)14.计算,其中C为曲线.15.判断曲线积分是否与路径无关?当C为曲线,并且沿增加的方向时,计算该曲线积分.(10分)16.计算曲面积分,其中Σ为曲面.
此文档下载收益归作者所有