欢迎来到天天文库
浏览记录
ID:55440721
大小:28.00 KB
页数:6页
时间:2020-05-13
《数学(心得)之浅谈数形结合在小学数学教学中的运用.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数学论文之浅谈数形结合在小学数学教学中的运用 数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻划数量关系的数和具体直观的图形有机结合,将抽象思维与形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图形性质或其位置关系的讨论,或把图形间的待定关系转化为相关元素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答就是数形结合的思想方法。数形结合的思想方法能扬数之长、取形之优,使得“数量关系”与“空间形式”珠连壁合,相映生辉。 数与形是数学研究中最古老的,也是最本质的两个侧面。在现代数学研究中,数形结合既是一个重要的数学思想,也
2、是一种常用的数学方法。一方面,许多数量关系、抽象概念和解析式,若赋予几何意义,往往变得非常直观;另一方面,一些图形的属性,若通过数量关系进行研究,会使得图形的性质更丰富,更深刻。数形结合的思维与方法也是考试中重点考察的思维能力之一。巧妙的运用数形结思想,不仅直观,易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。尤其在解选择题、填空题时更显其优越。 一、在理解算理过程中渗透数形结合思想。 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。但在教学中很多老师忽视了引导学生理解算理,尤其在课改之后,老师们注重了算法多样化,在计算方法的研究上下了很
3、大功夫,却更加忽视了算理的理解。我们应该意识到,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。”根据教学内容的不同,引导学生理解算理的策略也是不同的,我认为数形结合是帮助学生理解算理的一种很好的方式。 (一)“分数乘分数”教学片段 课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几? 在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来
4、表示出1/5×1/4这个算式。第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。后进生受到启发后修改自己的图形,更好地理解1/5×1/4这个算式所表示的意义。第三,全班点评,请一些画得好的同学去展示、交流。也请一些画得不对的同学谈谈自己的问题以及注意事项。 这样让学生亲身经历、体验“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。 (二)“有余数除法”教学片段 课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭
5、正方形的过程。 生:9÷4 师:结合图我们能说出这题除法算式的商吗? 生:2,可是两个搭完以后还有1根小棒多出来。 师反馈板书:9÷4=2……1,讲解算理。 师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒? …… 通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。学生学得很轻松,理解得也比较透彻。 二、在教学新知中渗透数形结合思想。 在教学新知时,
6、不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。 以“连除应用题”教学片段为例: 课一开始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。 30÷2÷3,学生画了右图:先平均分成2份,再将获得一份平均分成3份。 30÷3÷2,学生画了右图:先平均分成3份
7、,再将获得一份平均分成2份。 30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。 以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。 三、在数学练习题中挖掘数形结合思想。 运用数形结合是帮助学生分析数量关系,正确解答应用题的
此文档下载收益归作者所有