欢迎来到天天文库
浏览记录
ID:54944365
大小:589.50 KB
页数:21页
时间:2020-05-06
《《1.2 幂的乘方与积的乘方》课件4.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库。
1、11.2幂的乘方与积的乘方1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加.数学符号表示:(其中m、n为正整数)练习:判断下列各式是否正确.2、幂的乘方法则:幂的乘方,底数不变,指数相乘.数学符号表示:(其中m、n为正整数)练习:判断下列各式是否正确.(其中m、n、P为正整数)3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘.(即等于积中各因式乘方的积.)符号表示:练习:计算下列各式.下面的计算对不对?如果不对,怎样改正?(1)b5·b5=2b5()(2)b5+b5=b10()(3)x5·x5=x25()(4)y5·y5=2y10()(
2、5)c·c3=c3()(6)m+m3=m4()m+m3=m+m3b5·b5=b10b5+b5=2b5x5·x5=x10y5·y5=y10c·c3=c4××××××基础演练(1)a·a7-a4·a4=;(2)(1/10)5×(1/10)3=;(3)(-2x2y3)2=;(4)(-2x2)3=;基础演练0(1/10)84x4y6-8x6想一想:1.下面的计算对吗?错的请改正:(1)(43)5=48(2)(-28)3=(-2)24(3)[(-3)5]3=-315(4)(52)4×5=58√√×,415×,2242.说出下面每一步计算理由,并将它们填入括号内:(p2)3.(
3、p5)2=p6.p10()=p6+10()=p16幂的乘方法则同底数幂的乘法法则例、木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体.已知木星的半径大约是7×104km,木星的体积大约是多少km3(∏取3.14)?解:分析:球体体积公式答:木星的体积大约是1.44×1015km3.能力挑战你能用简便的方法计算下列各题:(4)若Xa=2,yb=3,求(x3a+2b)2的值.1.注意符号问题判断下列等式是否成立:①(-x)2=-x2,②(-x)3=-x3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-
4、(b-a).√√√√2.注意幂的性质的混淆和错误(a5)2=a7,a5·a2=a10,am+n=am+an.3、注意幂的运算法则逆用am·an=am+n(a≠0,m、n为正整数),(am)n=amn,(ab)n=anbn.(2)求整数的位数求N=212×58是几位整数.(1)用于实数计算计算:1、(-4)2007×0.2520082、22006-22005-22004-…-2-1(3)确定幂的末尾数字求7100-1的末尾数字.(4)比较实数的大小比较750与4825的大小.(5)求代数式的值1、已知10m=4,10n=5.求103m+2n+1的值.2、已知162×4
5、3×26=22a+1,(102)b=1012,求a+b的值.已知则正整数的值有()(A)1对(B)2对(C)3对(D)4对已知则能力挑战:1.比较大小:(-2)×(-2)2×(-2)3×…×(-2)9×(-2)100.<2.已知,数a=2×103,b=3×104,c=5×105.那么a·b·c的值中,整数部分有位.143.若10n×10m×10=1000,则n+m=.2能力挑战:在数学活动中,小明为了求的值,设计如图(1)所示的几何图形.(1)请你利用这个几何图形求的值为.图(1)动手合作:(2)请你利用图(2),再设计一个能求的值的几何图形.(2)(3)请仿照上述
6、方法计算下列式子:知识要点a.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.即am·an=am+n(m、n都是正整数)b.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m、n都是正整数)c.积的乘方法则积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即(ab)n=anbn(n为正整数)
此文档下载收益归作者所有