初三数学总复习教案-圆的有关性质.doc

初三数学总复习教案-圆的有关性质.doc

ID:53812513

大小:874.00 KB

页数:3页

时间:2020-04-07

初三数学总复习教案-圆的有关性质.doc_第1页
初三数学总复习教案-圆的有关性质.doc_第2页
初三数学总复习教案-圆的有关性质.doc_第3页
资源描述:

《初三数学总复习教案-圆的有关性质.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、初三数学总复习教案-圆的有关性质教学目标:知识目标:(1)理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系;(2)掌握垂径定理及其逆定理和圆心角,弧,弦,弦心距及圆周角之间的主要关系;掌握圆周角定理并会用它们进行计算;(3)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。(4)会用尺规作三角形的外接圆;了解三角形的外心的概念.能力目标:通过知识点和典型题的讲练,使学生熟练掌握本节课的知识点,再用题图变形与题组训练来培养学生综合运用知识的能力以及思维的灵活性和广阔性。情感目标:通过题图变形与题组训练来激发学生学习数学的兴趣;同时将课本的题目与中考

2、题结合在教学当中以进一步向学生强调“依纲靠本”的复习指导思想,强化学生的中考意识。知识结构圆圆内接四边形及性质重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理.运用圆内接四边形的性质解有关计算和证明题.【典型例析】例1.(1)[2002.广西]如图7.1-1.OE、OF分别是⊙O的弦AB、CD的弦心距,若OE=OF,则(只需写出一个正确的结论).(2)[2002.广西]如图7.1-2.已知,AB为⊙O的直径,D为弦AC的中点,BC=6cm,则OD=.[特色]以上几道中考题均为直接运用圆的有关性质解题.[解答](1)AB=CD或AB=CD或AD=BC

3、,直接运用圆心角、弧、弦、弦心距之间的关系定理.(2)由三角形的中位线定理知OD=BC[拓展]复习中要加强对圆的有关性质的理解、运用.例2.(1)[2002.大连市]下列命题中真命题是().A.平分弦的直径垂直于弦B.圆的半径垂直于圆的切线C.到圆心的距离大于半径的点在圆内D.等弧所对的圆心角相等(2)[2002.河北]如图7.1-3.AB是⊙O的直径,CD是⊙O弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为().A.12cmB.10cmC.8cmD.6cm(3)[2002.武汉市]已知如图7.1-4圆心角∠BOC=100,则圆周角∠B

4、AC的度数是().A.50B.100C.130D.200[特色]着眼于基本知识的考查和辨析思维的评价.[解答](1)D(考查对基本性质的理解).(2)D(过O作OM⊥CD,连结OC,由垂径定理得CM=CD=4,由勾股定理得OM=3,而AB两点到CD的距离和等于OM的2倍)(3)A(由圆周角定理可得)[拓展]第(2)题中,涉及圆的弦一般作弦心距.例3.[2002.广西南宁市]圆内接四边形ABCD,∠A、∠B、∠C的度数的比是1∶2∶3,则这个四边形的最大角是.[特色]运用圆内接四边形的性质进行简单计算.[解答]设A=x,则∠B=2x,∠C=3x.∵∠A+∠C=18

5、0,∴x+3x=180,∴x=45.∴∠A=45,∠B=90,∠C=135,∠D=90.∴最大角为135.[拓展]此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法.例4.[2002.陕西]已知,如图7.1-5BC为半圆O的直径,F是半圆上异于BC的点,A是BF的中点,AD⊥BC于点D,BF交AD于点E.(1)求证:BE•BF=BD•BC(2)试比较线段BD与AE的大小,并说明道理.[特色]此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.[解答](1)连结FC,则BF⊥FC.在△BDF和△BCF中,∵∠BFC=∠E

6、DB=90,∠FBC=∠EBD,∴△BDE∽△BFC,∴BE∶BC=BD∶BF.即BF•BE=BD•BC.(2)AE>BD,连结AC、AB则∠BAC=90.∵,∴∠1=∠2.又∵∠2+∠ABC=90,∠3+∠ABD=90,∴∠2=∠3,∠1=∠3,∴AE=BE.在Rt△EBD中,BE>BD,∴AE>BD.[拓展]若AC交BE于G,请想一想,在什么情况下线段BE、BG、FG有相等关系?例5.[2001.吉林省]如图7.4-1,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.(1)求⊙O的半径R;(2)设

7、∠BFE=α,∠GED=β,请写出α、β、90三者之间的关系式(只需写出一个),并证明你的结论.[特色]此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.[解答](1)连结OE,则OE⊥AD.∵四边形是矩形,∴∠D=90,OE∥CD,∴AC===10.∵△AOE∽△ACD,∴OE∶CD=AO∶AC,∴R∶6=(10-R)∶10,解之得:R=.(2)∵四边形是圆的内接四边形,∴∠EFB=∠EGC,∵∠EGC=90+β,∴α=90+β或∵β<90,α=∠EGC>90,∴β<90<α.[拓展]比较角的大小时,要善于发现角与角之间的关系,判断角是锐角

8、还是直角、钝角.[中考动

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。