欢迎来到天天文库
浏览记录
ID:53795821
大小:857.50 KB
页数:18页
时间:2020-04-26
《调研课二面角的求法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、求二面角的平面角二面角的平面角二面角的平面角以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.O复习:BAβαa30°60°30°30°30°60°60°60°60°ABCDHG如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是60°,山坡上有一条直路CD,它和坡角的水平线AB的夹角是30°,沿这条路上山到达山顶,行走了1000米。问:山有多高?已知CD=1000米,设DH垂直于过BC的水平平面,垂足为H,线段DH的长度就是所求的高度。在平面DBC内,过点D作DG⊥BC,垂足是G,连GH。∵DH⊥平面BCH,DG⊥BC,∴GH⊥B
2、C。因此,∠DGH就是坡面DGH和水平平面BGH所成的二面角的平面角,∠DGH=60°,由此得DH=DGsin60°=CDsin30°sin60°≈433(米)答:山高约433米。30°60°30°30°30°60°60°60°60°ABCDHGODACBD1A1C1B1例1.正方体ABCD-A1B1C1D1的棱长为1, 求二面角D-AC-D1的大小.ODACBD1A1C1B1变式1.正方体ABCD-A1B1C1D1的棱长为1,P是CD的中点,求二面角D-AP-D1的大小.PPDACBD1A1C1B1O变式2.正方体ABCD-A1B1C1D1的棱
3、长为1,P,E分别是CD和A1D1的中点,求二面角D-AP-E的大小.EFPDACBD1A1C1B1O变式3.正方体ABCD-A1B1C1D1的棱长为1,P,E分别是CD和B1C1的中点,求二面角D-AP-E的大小.EFEDACBD1A1C1B1F例2.正方体ABCD-A1B1C1D1的棱长为1, 求二面角D-BD1-A的大小.GOPEDACBD1A1C1B1F变式1.正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.PEDACBD1A1C1B1变式2.正方体ABCD-A1B1C1D1的棱长为1,P是AD的
4、中点,求二面角A-PD1-B的大小.三垂线法——利用三垂线定理或逆定理作出平面角,通过解直角三角形求角的大小.PαβaBAαβPABa小结1.二面角是立体几何的重点、热点、难点,求二面角的大小方法多,技巧性强.三垂线法是最为重要的方法,关键要抓住题目中的垂直关系.2.实施解题过程仍要注意“作、证、求”三环节,计算一般是放在三角形中,因此,“化归”思想很重要.PEDACBD1A1C1B1变式3.正方体ABCD-A1B1C1D1的棱长为1,P是AA1的中点,求面BD1P与面ABCD所成二面角角的大小.例3、(高考题)⊿ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC, 又SA=A
5、B=a,SB=BC,(1)求证:SC⊥平面BDE,(2)求二面角E-BD-C的大小?SABCEDSABCED1.四棱锥P-ABCD的底面是边长为4的正方形,PD⊥面ABCD,PD=6,M,N是PB,AB的中点,求二面角M-DN-C的平面角的正切值?NPDABCM作业:PDCl谢谢大家!再见!
此文档下载收益归作者所有