欢迎来到天天文库
浏览记录
ID:53366100
大小:301.50 KB
页数:5页
时间:2020-04-03
《南京航空航天大学Matrix-Theory双语矩阵论期末考试2015.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第5页(共5页)PartI(必做题,共5题,70分)第1题(15分)得分Letdenotethesetofallrealpolynomialsofdegreelessthan3withdomain(定义域).Theadditionandscalarmultiplicationaredefinedintheusualway.Defineaninnerproductonby.(1)ConstructanorthonormalbasisforfromthebasisbyusingtheGram-Schmid
2、torthogonalizationprocess.(2)Let.Findtheprojectionofontothesubspacespannedby{}.Solution:(1),,,,,-------------------------------------------------------------------------------------------(2)---------------------------------------------------------------
3、-------------------------------------------------第5页(共5页)第2题(15分)得分Letbethelineartransformationon(thevectorspaceofrealpolynomialsofdegreelessthan3)definedby.(1)Findthematrixrepresentingwithrespecttotheorderedbasis[]for.(2)Findabasisforsuchthatwithrespec
4、ttothisbasis,thematrixBrepresentingisdiagonal.(3)Findthekernel(核)andrange(值域)ofthistransformation.Solution:(1)-----------------------------------------------------------------------------------------------------------------(2)(ThecolumnvectorsofTarethee
5、igenvectorsofA)Thecorrespondingeigenvectorsinare(TdiagonalizesA).Withrespecttothisnewbasis,therepresentingmatrixofisdiagonal.-------------------------------------------------------------------------------------------------------------------(3)Thekerneli
6、sthesubspaceconsistingofallconstantpolynomials.Therangeisthesubspacespannedbythevectors-----------------------------------------------------------------------------------------------------------------------第5页(共5页)第3题(20分)得分Let.(1)Findalldeterminantdivi
7、sorsandelementarydivisorsof.(2)FindaJordancanonicalformof.(3)Compute.(Givethedetailsofyourcomputations.)Solution:(1),(特征多项式.Eigenvaluesare1,2,2.)Determinantdivisoroforder,,Elementarydivisorsare.-----------------------------------------------------------
8、-----------------------------------------------------------(2)TheJordancanonicalformis--------------------------------------------------------------------------------------------------------------------------(3)Foreigenvalue1,,An
此文档下载收益归作者所有