【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc

【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc

ID:53098936

大小:174.00 KB

页数:8页

时间:2020-04-01

【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc_第1页
【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc_第2页
【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc_第3页
【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc_第4页
【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc_第5页
资源描述:

《【走向高考】2012届高三数学一轮复习 4-6同步练习 北师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第4章第6节一、选择题1.(2010·全国卷Ⅱ)已知sinα=,则cos(π-2α)=(  )A.-         B.-C.D.[答案] B[解析] 本题考查了诱导公式、三角恒等变形及倍半角公式的应用.由诱导公式得cos(π-2α)=-cos2α,∴cos2α=1-2sin2α=1-2×=,∴cos(π-2α)=-.2.函数f(x)=sin2x+sinxcosx在区间[,]上的最大值是(  )A.1        B.C.D.1+[答案] C[解析] f(x)=+sin2x=sin+,又x∈,∴2x-∈,f(x)max=1+=,故选C

2、.3.已知tan2α=-2,且满足<α<,则的值为(  )A.B.--8-用心爱心专心C.-3+2D.3-2[答案] C[解析] ==.又tan2α=-2=∴2tan2α-2tanα-2=0.解得tanα=-或.又<α<,∴tanα=.原式==-3+2.故选C.4.(2010·新课标理)若cosα=-,α是第三象限的角,则=(  )A.-B.C.2D.-2[答案] A[解析] 本题综合考查了同角三角函数的基本公式以及二倍角公式的逆运用.∵cosα=-且α是第三象限的角,∴sinα=-,∴=======-,故选A.-8-用心爱心专心5.已知

3、sinα=,且α∈,则的值为(  )A.-B.-C.D.[答案] B[解析] ∵sinα=,α∈,∴cosα=-,∴====-.6.函数f(x)=(3sinx-4cosx)·cosx的最大值为(  )A.5B.C.D.[答案] C[解析] f(x)=(3sinx-4cosx)cosx=3sinxcosx-4cos2x=sin2x-2cos2x-2=sin(2x-θ)-2,其中tanθ=,所以f(x)的最大值是-2=.故选C.7.+2的化简结果是(  )A.4cos4-2sin4B.2sin4C.2sin4-4cos4D.-2sin4[答案

4、] C[解析] +2=2

5、cos4

6、+2

7、sin4-cos4

8、,∵π<4<,∴cos4

9、4°,b=sin26°,c=sin25°,∵y=sinx在(0°,90°)上单增,∴a

10、sin2α·sin2β

11、≤1.∴2

12、t

13、≤1,即-≤t≤.∴cosα·sinβ的取值范围是.解法二:

14、由sinα·cosβ=知sin2α·cos2β=.则cos2α·sin2β=(1-sin2α)(1-cos2β)=1-(sin2α+cos2β)+sin2αcos2β=-(sin2α+cos2β)≤-2=,所以-≤cosα·sinβ≤.三、解答题12.已知函数f(x)=asinx·cosx-acos2x+a+b.(a>0)(1)x∈R,写出函数的单调递减区间;(2)设x∈[0,],f(x)的最小值是-2,最大值是,求实数a,b的值.[解析] (1)f(x)=a(sinx·cosx-cos2x+)+b=a×(sin2x-×+)+b=a·si

15、n(2x-)+b∵a>0,x∈R,∴由2kπ+≤2x-≤2kπ+(k∈Z)得,f(x)的递减区间是[kπ+π,kπ+π](k∈Z)(2)∵x∈[0,],∴2x-∈[-,]∴sin(2x-)∈[-,1]∴函数f(x)的最小值是-a+b=-2最大值a+b=,解得a=2,b=-2.13.在△ABC中,已知a·cos2+c·cos2=b.-8-用心爱心专心(1)求证:a、b、c成等差数列;(2)求角B的范围.[解析] (1)由条件得a·+c·=b.∴a+c+(acosC+ccosA)=3b.∴a+c+a·+c·=3b,∴a+c=2b,即a、b、c

16、成等差数列.(2)cosB===≥=.∵B∈(0,π),∴0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。