欢迎来到天天文库
浏览记录
ID:52673741
大小:278.06 KB
页数:6页
时间:2020-03-29
《八年级四边形专题2.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、八年级四边形专题【典例精讲】例1.如图,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,点E、F分别是AB、BC边的中点,连接AF、CE交于点M,连接BM并延长交CD于点N,连接DE交AF于点P,则结论:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④;⑤,正确的个数有【】A.5个B.4个C.3个D.2个例2.如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC
2、=8时,求PQ的长.5例3.如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t秒(03、于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.5例5.在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=4、BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.例6.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①t5、an∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.5【考题训练】一、选择题1.如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为【】 A.B.C.D.2.如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。其中正确的个数是【】A、1个B、2个C、3个D、4个3.如图,在直角梯形ABCD中,AD//BC,∠C=96、0°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于【 】A.10B.11C.12D.134.已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是【】A.25B.50C.D.二、填空题1.如图,在梯形ABCD中,AB∥CD,∠A+∠B=90º,AB=7cm,BC=3cm,AD=4cm,则CD=cm.52.如图,在梯形ABCD中,AD∥BC,,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当,时,四边形BGEF的周长为.3.如图,在梯形ABCD7、中,AD∥BC,AD=4,AB=CD=5,∠B=60°,则下底BC的长为.4.如图,在等腰梯形ABCD中,AD∥BC,BD⊥DC,点E是BC的中点,且DE∥AB,则∠BCD的度数是三、解答题1.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求证:∠ADP=∠EPB;(2)求∠CBE的度数;52.如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点(1)求证:四边形EFG
3、于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.5例5.在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=
4、BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.例6.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①t
5、an∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.5【考题训练】一、选择题1.如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为【】 A.B.C.D.2.如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。其中正确的个数是【】A、1个B、2个C、3个D、4个3.如图,在直角梯形ABCD中,AD//BC,∠C=9
6、0°,AD=5,BC=9,以A为中心将腰AB顺时针旋转90°至AE,连接DE,则△ADE的面积等于【 】A.10B.11C.12D.134.已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是【】A.25B.50C.D.二、填空题1.如图,在梯形ABCD中,AB∥CD,∠A+∠B=90º,AB=7cm,BC=3cm,AD=4cm,则CD=cm.52.如图,在梯形ABCD中,AD∥BC,,BE平分∠ABC且交CD于E,E为CD的中点,EF∥BC交AB于F,EG∥AB交BC于G,当,时,四边形BGEF的周长为.3.如图,在梯形ABCD
7、中,AD∥BC,AD=4,AB=CD=5,∠B=60°,则下底BC的长为.4.如图,在等腰梯形ABCD中,AD∥BC,BD⊥DC,点E是BC的中点,且DE∥AB,则∠BCD的度数是三、解答题1.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求证:∠ADP=∠EPB;(2)求∠CBE的度数;52.如图,梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,ACBD,E、F、G、H分别为AB、BC、CD、DA的中点(1)求证:四边形EFG
此文档下载收益归作者所有