欢迎来到天天文库
浏览记录
ID:51784255
大小:157.00 KB
页数:5页
时间:2020-03-15
《梯形常见辅助线作法(教师版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、梯形常见辅助线作法1、平移法(1)梯形内平移一腰(过一顶点做腰的平行线)[例1]如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠C=60°,AD=15cm,BC=49cm,求CD的长.解:过D作DE∥AB交BC于E,则四边形ABED为平行四边形.∴AD=BE=15cm,AB=DE.∴EC=BC-BE=BC-AD=49-15=34cm.又∵AB=CD, ∴ DE=CD.又∵∠C=60°,∴△CDE是等边三角形,即CD=EC=34cm.(2)梯形外平移一腰(过一顶点做腰的平行线)[例2]如图,在梯
2、形ABCD中,AB∥CD,四边形ACED是平行四边形,延长DC交BE于F.求证:EF=FB证明:过点B作BG∥AD,交DC的延长线于G∴四边形ABGD是平行四边形∴AD=BG∵ACED中,AD∥CEAD=CE∴CE∥BG且CE=BG∴∠CEF=∠GBF又∵∠CFE=∠GFB∴△ECF≌△BGF(ASA)∴EF=FB点评:过梯形上底或下底的一个端点作另一腰的平行线,可将梯形转化为一个平行四边形和三角形。(3)梯形内平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。[例
3、3]如图,已知:梯形ABCD中,AD∥BC,∠C+∠B=90°,M,N分别是AD,BC的中点.求证:MN=证明:过点E分别作AB、CD的平行线,交BC于点G、H,则四边形ABGE,EDCH为平行四边形∴AE=BG,ED=HC∵AB∥EG∴∠B=∠EGF又∵DC∥EH∴∠C=∠EHF则∠EGH+∠EHG=∠B+∠C=90°,△EGH是直角三角形∵E、F分别是AD、BC的中点∴AE=ED,BF=CF∴GF=FH则有EF==(BC-BG-HC)=(BC-AD)(4)平移对角线(过一顶点做对角线的平行线)[
4、例4]求证:对角线相等的梯形是等腰梯形已知:在梯形ABCD中,AD∥BC,对角线AC=BD求证:AB=DC证明:过点D作DE∥AC交BC的延长线于点E则四边形ACED是平行四边形∴AC=DE∵DE=AC=DB∴∠DBC=∠E∠ACB=∠E∴∠DBC=∠ACB又∵BD=CABC=CB∴△ABC≌△DCB(SAS)∴AB=DC点评:过梯形的一个顶点作对角线的平行线,将对角线的有关条件转化到一个三角形中。2、作梯形的高(1)作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形[例6]
5、如图,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E求证:四边形ABFE是等腰梯形证明:过点D作DG⊥AB于点G,则易知四边形DGBC是矩形,所以DC=BG∵AB=2DC ∴AG=GB∴DA=DB ∴∠DAB=∠DBA又∵EF//AB∴四边形ABFE是等腰梯形。(2)作两条高:从同一底边的两个端点作另一条底边的垂线,把梯形转化为两个直角三角形和一个矩形[例7]如图,在梯形ABCD中,DC∥AB,AD=BC,
6、若AD=5,CD=2,AB=8,求梯形ABCD的面积。解:过点D、C分别作DE⊥AB于E,CF⊥AB于F.∵DC∥AB,DE⊥AB,CF⊥AB∴四边形CDEF是矩形 ∴DC=EF,DE=CF易证△ADE≌△DCF(HL)∴AE=BF∴AE=(AB-EF)=(AB-CD)=3∴DE=3、延长两腰交于一点,可使梯形转化为三角形[例5]如图,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。解:延长BA、CD交于点E∵在△BCE中,∠B=50°,∠C=80°∴∠
7、E=50°∴BC=EC=5又∵AD//BC∴∠EAD=∠B=50°∴AD=ED=2∴CD=EC-ED=5-2=34、中位线法(1)已知梯形一腰中点,作梯形的中位线[例10]如图,在梯形ABCD中,AB//DC,O是BC的中点,∠AOD=90°,求证:AB+CD=AD证明:取AD的中点E,连接OE,则易知OE是梯形ABCD的中位线∴OE=(AB+CD)在△AOD中,∠AOD=90°,AE=DE∴∴AB+CD=AD点评:已知梯形一腰中点,作梯形的中位线,既可轻松解决计算问题,也可以在证明中将梯形转化为三
8、角形。(2)已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线[例11]如图,在梯形ABCD中,AD//BC,E、F分别是BD、AC的中点,求证:(1)EF//AD;(2)证明:连接DF,并延长交BC于点G,易证△AFD≌△CFG(ASA)则AD=CG,DF=GF∵DE=BE,∴EF是△BDG的中位线∴EF//BG且又∵AD//BG,BG=BC-CG=BC-AD∴EF//AD,EF5、构造全等三角形(1)连接梯形一顶点
此文档下载收益归作者所有