资源描述:
《【南方新课堂】2016年的高考数学总复习 第七课时 解析几何 第9讲 轨迹与方程教学教案 理.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第9讲轨迹与方程1.掌握椭圆的定义、几何图形和标准方程.2.了解双曲线的定义、几何图形和标准方程.3.了解抛物线的定义、几何图形和标准方程.求轨迹方程的常用方法直接法待定系数法定义法相关点法参数法将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程已知所求曲线的类型,求曲线方程.先根据条件设出所求曲线的方程,再由条件确定其待定系数若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),则用定义直接探求动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用x,y的代数式表示x0,y0,再将x0,
2、y0代入已知曲线得要求的轨迹方程当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程1.已知△ABC的顶点B(0,0),C(5,0),AB边上的中线长
3、CD
4、=3,则顶点A的轨迹方程为________________________.2.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是__________.3.动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为__________.4.设圆C与圆x2+(y-3)2
5、=1外切,与直线y=0相切,则圆C的圆心轨迹为()AA.抛物线B.双曲线C.椭圆D.圆(x-10)2+y2=36(y≠0)y2=8xy2=8x考点1利用直接法求轨迹方程图7-9-1例1:(人教版选修21P373)如图791,已知点C的坐标是(2,2),过点C的直线CA与x轴交于点A,过点C且与直线CA垂直的直线CB与y轴交于点B.设点M是线段AB的中点,求点M的轨迹方程.【规律方法】求轨迹的步骤是“建系、设点、列式、化简”,建系的原则是特殊化(把图形放在最特殊的位置上),这类问题一般需要通过对图形的观察、分析、转化,找出一个关于动点的等量关系.考点2利用定义法求轨迹方程例2:已知圆
6、C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.所以
7、MC2
8、-
9、MC1
10、=
11、BC2
12、-
13、AC1
14、=3-1=2.图D27解:如图D27,设动圆M与圆C1及圆C2分别外切于点A和点B,根据两圆外切的充要条件,得
15、MC1
16、-
17、AC1
18、=
19、MA
20、,
21、MC2
22、-
23、BC2
24、=
25、MB
26、.因为
27、MA
28、=
29、MB
30、,【互动探究】解:设动圆M的半径为r,根据两圆相切的充要条件,得
31、MC1
32、=8-r,
33、MC2
34、=2+r,所以
35、MC2
36、+
37、MC1
38、=10.这表明动点M到两定点C2,C1的距离之和是常数10.根据椭圆的定义,动点M的轨迹
39、为椭圆,即2a=10,a=5.又
40、C1C2
41、=6=2c,则c=3,b2=a2-c2=16.2.(由人教版选修21P502改编)已知动圆M与圆C1:(x-3)2+y2=64内切,和圆C2:(x+3)2+y2=4外切,求动圆圆心M的轨迹方程考点3利用相关点法求轨迹方程例3:已知点A在圆x2+y2=16上移动,点P为连接M(8,0)和点A的线段的中点,求点P的轨迹方程.化简,得(x-4)2+y2=4.故点P的轨迹方程为(x-4)2+y2=4.【规律方法】动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用x,y的代数式表示x0,y0,
42、再将x0,y0代入已知曲线方程得要求的轨迹方程.这种求轨迹方程的方法叫相关点法(也叫转移法).【互动探究】3.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作平行四边形MONP,求点P的轨迹方程.●思想与方法●⊙轨迹方程中的分类讨论例题:(2014年广东汕头一模,由人教版选修21P8010改编)已知动点P(x,y)与两个定点M(-1,0),N(1,0)的连线的斜率之积等于常数λ(λ≠0).(1)求动点P的轨迹C的方程;(2)试根据λ的取值情况讨论轨迹C的形状.(2)讨论如下:①当λ>0时,轨迹C为中心在原点,焦点在x轴上的双曲线(除去顶点);②当-1<λ<
43、0时,轨迹C为中心在原点,焦点在x轴上的椭圆(除去长轴上的两个端点);③当λ=-1时,轨迹C为以原点为圆心,1为半径的圆[除去点(-1,0),(1,0)];④当λ<-1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴上的两个端点).【互动探究】5.设点A,B的坐标分别为(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是-1,求点M的轨迹方程.