欢迎来到天天文库
浏览记录
ID:51319370
大小:109.50 KB
页数:2页
时间:2020-03-21
《武汉中考2011两道压轴题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.(本题满分10分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.(2) 如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点. ①如图2,若AB=AC=1,直接写出MN的长; ②如图3,求证MN2=DM·EN. 25.(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点. (1)求抛物线的解析式; (2)设抛物线的顶点为M,直线y=
2、-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围; (3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.24.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ, ∴DP/BQ=AP/AQ. 同理在△ACQ中,EP/C
3、Q=AP/AQ. ∴DP/BQ=EP/CQ.(2) 9.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG又∵DG=GF=EF,∴GF2=CF·BG 由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF) ∴MN2=DM·EN 25.(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点 ∴9a-3b+3=
4、0且a-b+3=0 解得a=1 b=4∴抛物线的解析式为y=x2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M(-2,,1)∴直线OD的解析式为y=x 于是设平移的抛物线的顶点坐标为(h,h),∴平移的抛物线解析式为y=(x-h)2+h.①当抛物线经过点C时,∵C(0,9),∴h2+h=9, 解得h=. ∴ 当 ≤h< 时,平移的抛物线与射线CD只有一个公共点. ②当抛物线与直线CD只有一个公共点时, 由方程组y=(x-h)2+h,y=-2x+9. 得 x2+
5、(-2h+2)x+h2+h-9=0,∴△=(-2h+2)2-4(h2+h-9)=0, 解得h=4. 此时抛物线y=(x-4)2+2与射线CD唯一的公共点为(3,3),符合题意. 综上:平移的抛物线与射线CD只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 ≤h<. (3)方法1 将抛物线平移,当顶点至原点时,其解析式为y=x2,设EF的解析式为y=kx+3(k≠0). 假设存在满足题设条件的点P(0,t),如图,过P作GH∥x轴,分别过E,F作GH的垂线,垂足为G,H.∵△PEF的内心
6、在y轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP,∴△GEP∽△HFP,...............9分∴GP/PH=GE/HF, ∴-xE/xF=(yE-t)/(yF-t)=(kxE+3-t)/(kxF+3-t) ∴2kxE·xF=(t-3)(xE+xF) 由y=x2,y=-kx+3.得x2-kx-3=0. ∴xE+xF=k,xE·xF=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.方法2 设EF的解析式为y=kx+3(k
7、≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P(0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.
此文档下载收益归作者所有