欢迎来到天天文库
浏览记录
ID:51043035
大小:58.50 KB
页数:3页
时间:2020-03-18
《2016中考命题研究数学(贵阳):第六节二次函数的实际应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六节 二次函数的实际应用,贵阳五年中考真题及模拟)1.(2015贵阳考试说明)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于
2、2200元?2.(2015贵阳模拟)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售时,每天获得的利润最大?获得的最大利润是多少元?(3)在(2)的情况下,物价部门规定该商场在该工艺品的经营上每天获得的利润不能超过4800元,而商场在该商品的经营中,每
3、天所获得的利润不想低于4704元,应该如何定价该工艺品?,中考考点清单) 二次函数的实际应用解二次函数应用题步骤及关键点步骤关键点(1)分析问题明确题中的常量与变量及其它们之间的关系,确定自变量及函数(2)建立模型,确定函数解析式根据题意确定合适的解析式或建立恰当的坐标系(3)求函数解析式变量间的数量关系表示及自变量的取值范围(4)应用性质,解决问题熟记顶点坐标公式或配方法,注意a的正负及自变量的取值范围,中考重难点突破) 二次函数的实际应用【例】(2015贵阳考试说明)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现
4、,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【解析】(1)根据每月的利润z=(x-18)y,再把y=-2x+100代入即可求出z与x之间的函数关系式.(2)把z=440代入z
5、=-2x2+136x-1800,解这个方程即可.(3)根据厂商每月的制造成本不超过540万元,以及成本价18元,得出销售单价的取值范围,进而得出最大利润.【学生解答】(2016原创预测)为了抓住国家降低汽车购置税,刺激汽车的大好机遇,实现新的发展,汽车生产企业策划部拟定了以下两种新的投资方案.方案一:生产家用型汽车,每辆汽车成本为a万元(a为常数,且36、数),且生产的汽车可全部售出,又已知年销售x辆豪华型汽车时需上交0.05x2万元的附加税.在不考虑其他因素的情况下:(1)分别写出该企业两个投资方案的年利润y1、y2与生产汽车辆数x之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪种投资方案?
6、数),且生产的汽车可全部售出,又已知年销售x辆豪华型汽车时需上交0.05x2万元的附加税.在不考虑其他因素的情况下:(1)分别写出该企业两个投资方案的年利润y1、y2与生产汽车辆数x之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪种投资方案?
此文档下载收益归作者所有