集合与简易逻辑高三总结.doc

集合与简易逻辑高三总结.doc

ID:50543597

大小:410.00 KB

页数:4页

时间:2020-03-10

集合与简易逻辑高三总结.doc_第1页
集合与简易逻辑高三总结.doc_第2页
集合与简易逻辑高三总结.doc_第3页
集合与简易逻辑高三总结.doc_第4页
资源描述:

《集合与简易逻辑高三总结.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、概念、方法、题型、易误点及应试技巧总结集合与简易逻辑1.集合元素具有确定性、无序性和互异性.在求有关集合问题时,尤其要注意元素的互异性,如(1)设P、Q为两个非空实数集合,定义集合P+Q=,若,,则P+Q中元素的有________个。(答:8)(2)设,,,那么点的充要条件是________(答:);(3)非空集合,且满足“若,则”,这样的共有_____个(答:7)2.遇到时,你是否注意到“极端”情况:或;同样当时,你是否忘记的情形?要注意到是任何集合的子集,是任何非空集合的真子集。如集合,,且,

2、则实数=______.(答:;)3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为如满足集合M有______个。 (答:7)4.集合的运算性质: ⑴; ⑵;⑶;⑷;⑸;⑹;⑺.如设全集,若,,,则A=_____,B=___.(答:,)5.研究集合问题,一定要理解集合的意义―抓住集合的代表元素。如:—函数的定义域;—函数的值域;—函数图象上的点集,如(1)设集合,集合N=,则___(答:);(2)设集合,,,则_____(答:提示:,) 6.数轴和韦恩图是进行交、并、补运

3、算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知函数在区间上至少存在一个实数,使,求实数的取值范围。 (答:,提示或)7.复合命题真假的判断。“或命题”的真假特点是“有真即真,要假全假”;“且命题”的真假特点是“有假即假,要真全真”;“非命题”的真假特点是“真假相反”。如在下列说法中:⑴“且”为真是“或”为真的充分不必要条件;⑵“且”为假是“或”为真的充分不必要条件;⑶“或”为真是“非”为假的必要不充分条件;⑷“非”为真是“且

4、”为假的必要不充分条件。其中正确的是__________(答:⑴⑶)8.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若﹁p则﹁q”;逆否命题为“若﹁q则﹁p”。提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命

5、题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“”判断其真假,这也是反证法的理论依据。(5)哪些命题宜用反证法?如(1)“在△ABC中,若∠C=900,则∠A、∠B都是锐角”的否命题为(答:在中,若,则不都是锐角);(2)已知函数,证明方程没有负数根。9.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若,则A是B的充分条件;若,则A是B的必要条件;若A=B,则A是B

6、的充要条件。如(1)给出下列命题:①实数是直线与平行的充要条件;②若是成立的充要条件;③已知,“若,则或”的逆否命题是“若或则”;④“若和都是偶数,则是偶数”的否命题是假命题。其中正确命题的序号是_______(答:①④);(2)设命题p:;命题q:。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是(答:)(3)关于充要条件的几个结论:①“定义域关于原点对称”是“函数为奇或偶函数”的必要不充分条件.②在△ABC中,A>Ba>b.③“

7、

8、=

9、

10、”是“”的必要不充分条件④“{an}既是等差,又是

11、等比数列”是“{an}是常数数列”的充分不必要条件.⑤“方程x2+y2+Dx+Ey+F=0”是“该方程表示圆方程”的必要不充分条件.⑥是为极值点的非充分非必要条件.10.一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。如已知关于的不等式的解集为,则关于的不等式的解集为_______(答:)11.一元二次不等式的解集(联系图象)。如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)12.对于方程有实数解的问题。首先要讨

12、论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)对一切恒成立,则的取值范围是_______(答:);(2)关于的方程有解的条件是什么?(答:,其中为的值域),特别地,若在内有两个不等的实根满足等式,则实数的范围是_______.(答:)13.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式的解集的端点值,也是二次函数的图象与轴的交点的横坐标。如(1)不等式的解集是,则=_

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。