东南大学高等数学实验报告.doc

东南大学高等数学实验报告.doc

ID:49974507

大小:105.00 KB

页数:8页

时间:2020-03-03

东南大学高等数学实验报告.doc_第1页
东南大学高等数学实验报告.doc_第2页
东南大学高等数学实验报告.doc_第3页
东南大学高等数学实验报告.doc_第4页
东南大学高等数学实验报告.doc_第5页
资源描述:

《东南大学高等数学实验报告.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、东南大学实验报告高等数学数学实验报告实验人员:院(系)_______________学号________姓名实验地点:计算机中心机房实验一一、实验题目:设数列由下列递推关系式给出:,观察数列的极限。二、实验目的和意义利用数形结合的方法观察数列的极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值...三、程序设计四、程序运行结果4东南大学实验报告五、结果的讨论和分析1、从结果中可以看到极限无限靠近2、观察比较方便,利于初学者的学习。实验二一、实验题目:已知函数,作出并比较当c分别取-1,0,1,2,3时的图形,并从图上观察极值点、驻点、单调区间

2、、凹凸区间以及渐近线。二、实验目的和意义熟悉Mathematica所具有的良好的作图功能,并通过函数图形来认识函数,运用函数的图形来观察和分析函数的有关性态,建立数形结合的思想。三、程序设计四、程序运行结果4东南大学实验报告函数在c=-1,0,1,2,3时的图像分别如下:4东南大学实验报告4东南大学实验报告4东南大学实验报告五、结果的讨论和分析C值对函数图形性态的影响很大,从图上可以很直观地观察到极值点、驻点、单调区间、凹凸区间以及渐近线。实验三实验题目:作出函数Y=ln(cosx^2+sinx)(-π/4,π/4)的函数图形和泰勒展开式图形,选取不同的X

3、0和n,并进行比较。二、实验目的和意义利用Mathematica计算函数的各阶泰勒多项式,并通过绘制曲线图形,进一步掌握泰勒展开与函数的逼近思想。三、程序设计y[x_]:=log[cos[x^2]+sin[x]];Plot[y[x],{x,-Pi/4,Pi/4}]Clear;y[x_]:=log[cos[x^2]+sin[x]];t=Table[Normal[Series[y[x],{x,0,i}]],{I,0,10,2}];PrependTo[t];Plot[Evaluate[t],{x,-Pi/4,Pi/4}]Clear;y[x_]:=log[cos[

4、x^2]+sin[x]];t1=Table[Normal[Series[y[x],{x,5,10}]]];PrependTo[t1];Plot[{t1},{x,-Pi/4,Pi/4}]8东南大学实验报告四、程序运行结果原函数图形。固定x0=0时,n取不同值时的函数图像。当n=1时当n=5时当n=10时8东南大学实验报告在x0分别为0,-0.5,0.25上f(x)的4阶泰勒展开式五、结果的讨论和分析从实验结果可以看出,函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高,但是对于任一确定次数的多项式,它只在展开点附近的一个局部范围内才有较好的近似精确度。实

5、验四实验题目:分别用梯形法、抛物线法计算定积分的近似值(精确到0.0001)。二、实验目的和意义利用该实验,计算出未用算式给出或原函数很难计算的被积函数的定积分。三、程序设计1.采用梯形法8东南大学实验报告在Mathematica命令窗口中输入如下命令并运行:2.采用抛物线法在Mathematica命令窗口中输入如下命令并运行:四、程序运行结果1.采用梯形法得出定积分的近似值为1.29199。2.采用抛物线法得出定积分的近似值为1.29193。五、结果的讨论和分析从实验结果可以看出,抛物线法币梯形法收敛得要快。8

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。