欢迎来到天天文库
浏览记录
ID:49718467
大小:204.50 KB
页数:16页
时间:2020-03-03
《最新人教版八年级数学下册第十七章 勾股定理导学案(全章).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、广汉市金鱼镇中学校八年级数学导学案编制人:杨维东参与人:二年级数学组班级学生姓名第十七章勾股定理课题:17.1勾股定理(1)学习目标:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2.培养在实际生活中发现问题总结规律的意识和能力。3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。学习重点:勾股定理的内容及证明。学习难点:勾股定理的证明。学习过程:一、自主学习画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。(勾3,股4,弦5)。以上这个事实是我国古代3000多年前有一个叫商高
2、的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42_____52,52+122_____132,那么就有_____2+_____2=_____2。(用勾、股、弦填空)对于任意的直角三角形也有这个性质吗?勾股定理内容文字表述:几何表述:二、交流展示例1、已知:在△ABC中,∠
3、C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。分析:⑴准备多个三角形模型,利用面积相等进行证明。⑵拼成如图所示,其等量关系为:4S△+S小正=S大正即4××+﹝﹞2=c2,化简可证。⑶发挥学生的想象能力拼出不同的图形,进行证明。⑷勾股定理的证明方法,达300余种。这个古老而精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。16广汉市金鱼镇中学校八年级数学导学案编制人:杨维东参与人:二年级数学组班级学生姓名求证:a2+b2=c2
4、。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=_____________右边S=_____________左边和右边面积相等,即_________________________化简可得_______________________三、合作探究1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c=。(已知a、b,求c)⑵a=。(已知b、c,求a)⑶b=。(已知a、c,求b)2.如下表,表中所给的每行的三个数a、b、c,有a<b<c,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数
5、式表示出来。3、4、532+42=525、12、1352+122=1327、24、2572+242=2529、40、4192+402=412…………19,b、c192+b2=c23.△ABC的三边a、b、c,(1)若满足b2=a2+c2,则=90°;(2)若满足b2>c2+a2,则∠B是角;(3)若满足b2<c2+a2,则∠B是角。四、达标测试1.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()2.斜边长为25B.三角形的周长为25C.斜边长为5D.三角形面积为203.一直角三角形的斜边长比一条直角边长多2,另一直角边长为6,则斜边长为
6、()A.4B.8C.10D.124.直角三角形的两直角边的长分别是5和12,则其斜边上的高的长为()16广汉市金鱼镇中学校八年级数学导学案编制人:杨维东参与人:二年级数学组班级学生姓名A.6B.8C.D.5、已知,如图1-1-5,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求CFCE图1-1-5五、课后记课题:17.1勾股定理(2)教学目标:1.会用勾股定理进行简单的计算。2.树立数形结合的思想、分类讨论思想。重难点:1.重点:勾股定理的简单计算。2.难点:勾股定理的灵活运用。一、自主
7、学习1.勾股定理的具体内容是:。2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;⑵若D为斜边中点,则斜边中线与斜边的关系:;⑶若∠B=30°,则∠B的对边和斜边的关系:;⑷三边之间的关系:。二、交流展示例1、在Rt△ABC,∠C=90°⑴已知a=b=5,求c。⑵已知a=1,c=2,求b。⑶已知c=17,b=8,求a。16广汉市金鱼镇中学校八年级数学导学案编制人:杨维东参与人:二年级数学组班级学生姓名⑷已知a:b=1:2,c=5,求a。⑸已知b=15,∠A=30°,求a,c。分析:刚开始使用定理,让学生画好图
8、形,并标好图形,理清边之间的关系。⑴已知_________边,求________边,直接用_______定理。⑵⑶已知__
此文档下载收益归作者所有