“复数及其应用”教学设计与反思.doc

“复数及其应用”教学设计与反思.doc

ID:49201123

大小:66.00 KB

页数:7页

时间:2020-03-01

“复数及其应用”教学设计与反思.doc_第1页
“复数及其应用”教学设计与反思.doc_第2页
“复数及其应用”教学设计与反思.doc_第3页
“复数及其应用”教学设计与反思.doc_第4页
“复数及其应用”教学设计与反思.doc_第5页
资源描述:

《“复数及其应用”教学设计与反思.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、“复数及其应用”教学设计与反思[摘要]对于“复数及其应用”内容,在各类学校,针对不同的学生的教学方法不同.针对中等专业学校的教学设计,有其独特性.[关键词]整合活动反思[中图分类号]G633.6[文献标识码]A[文章编号]16746058(2015)110017一、教材分析“复数及其应用”是江苏省教育出版社凤凰职教《数学》第四册第17章的内容.本章是在整数、有理数、实数的基础上的总结与扩展,在学习过整数、有理数、实数的概念和运算,一次方程和一元二次方程、平面直角坐标系后,再介绍平面向量、任意角的三角值等知识的基础上介绍了复数的概念、复数的代数运算、复数的几何意义、三角形

2、式和三角形式的乘除、乘方运算.对于职业学校的学生来说,学习一些复数的基础知识是十分必要的,这不仅使学生可以对数的概念有一个较为完整的认识,而且也为运用数学知识解决问题增添了工具,同时复数知识还为某些专业知识打下了基础.本章所介绍的复数内容是学生以前没有接触过的全新的内容,但复数的概念是实数概念的扩展.复数的运算遵循实数运算的运算律和运算顺序.为了使学生顺利地掌握木章的内容,教材突出了复数的概念、运算与实数的概念、运算之间的类比,即类比实数的概念和性质讲复数的有关概念和性质;类比平面直角坐标系讲复平面;类比实数的运算讲复数的运算,注意知识的发生、发展过程.学生的数学学习是

3、对数学知识的一种特殊认识过程,这一认识过程也必须遵循从感性认识到理性认识,又从理性认识到实践的过程,这个过程反映到对具体知识的编排上,那就是要从实际事例的分析中或者对已有知识的分析、推理中引入新的概念,通过观察、比较、分析、抽象、概括得岀结论.因为我任课的班级是服装专业,所以略去了极坐标形式的介绍和电学的相关内容•另外也删除了太过专业的指数形式•所以将原来书中的四节重新整合成如下三块:二、学情分析学生已经学习过整数、有理数、实数的概念和运算,一元一次方程和一元二次方程、平面直角坐标系,平面向量、任意角三角值等知识,但数学基础欠扎实,知识遗忘较快,个体差异十分明显.学生对

4、数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,他们对数的生成发展的历史和规律缺乏整体认识,知识体系还未形成.另一方面,学生对方程解的问题会默认为在实数集中进行.学生探索分析、解决问题的能力不强,对旧知识的掌握持久时间相对来说比较短,计算能力还有待提高.而文科类女生思维灵活性不是特别好,对知识间的联系,在理解和应用上有一定难度,反应速度相对较慢,学习习惯有待改善.比如完成作业后学生对正确答案的求知欲很低.大多数学生对学习数学的兴趣需耍培养,自信心要增强.有些学生情绪化特征较明显,如一得到表扬肯定,易喜形于色.她们有学好数学的想法,喜欢

5、老师指导她们课前复习,课堂多提一些关联性的小问题串起学习的内容.她们在教师的引导下能够跟着思考,能够听懂基本内容.三、教学目标1•知识与技能•理解复数的几何意义;会用复平面内的点和向量来表示复数,了解它们之间一一对应的关系;知道实轴、虚轴上及各象限内的点所对应的复数的特征;掌握复数的模、辐角的概念及其计算公式,会用计算器求复数的模和辐角;理解复数的三角形式的定义,会进行代数形式和三角形式之间的转化;掌握复数三角形式的乘除和乘方运算.2.过程与方法.渗透转化、数形结合的数学思想和方法,提高分析、解决问题的能力;通过用复数的模和辅角来表示复数的实部和虚部,使得新旧知识结合;

6、通过类比知道在进行复数乘除及乘方运算时采用三角式使计算变得简便,通过由两个三角形式的复数相乘拓展到多个三角形式的复数相乘,再到特殊的多个相同复数的三角形式相乘得到棣莫弗定理.3•情感、态度与价值观.引导学生观察现象,发现问题,提出观点,验证结论,促使学生形成良好的学习思维品质;充分发挥学生的主观能动性,激发学生的学习热情,增加学生的求知欲;注意观察、发现、对比、分析和归纳.四、教学重点难点1•重点.复数的几何意义,复数的模、辐角及辐角主值,理解复数的三角形式的定义,复数三角式的乘除.2•难点.复数的几何意义,复数代数形式化为三角形式,非标准的复数三角形式化成标准的三角形

7、式.五、教学过程设计第一环节设置了三个问题:问题1对于复数a+bi和c+di(a,b,c,dWR),你认为满足什么条件时,这两个复数相等?(a=c且b=d,即实部与虚部分别相等时,这两个复数相等)问题2若把a,b看成有序实数对(a,b),则(a,b)与复数a+bi是怎样的对应关系?有序实数对(a,b)与平面直角坐标系中的点是怎样的对应关系?(一一对应关系)问题3类比实数的性质,你能否找到用来表示复数的几何模型?还能得岀复数其他的一些性质吗?学生通过回忆、猜测、回答,小组讨论达成共识:确定一个复数的条件是什么,以有序实数对为桥梁在复数和点之

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。