教案角平分线的性质1.doc

教案角平分线的性质1.doc

ID:48980794

大小:141.00 KB

页数:3页

时间:2020-02-26

教案角平分线的性质1.doc_第1页
教案角平分线的性质1.doc_第2页
教案角平分线的性质1.doc_第3页
资源描述:

《教案角平分线的性质1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、11.3角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程活动1.提出问题,创设情境问题1:不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?问题2:再打开纸片,看看折痕与这个角有何关系?活动2.导入新课如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?.议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说

2、明它的道理吗?要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.看看条件够不够.所以△ABC≌△ADC(SSS).所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.活动3.探究新知作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.议一议:1.在上面作法的第二步中,去掉“大于MN的长

3、”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.活动4.练一练:任意画一角∠AOB,作它的平分线.活动5.探索活动按以下步骤折纸1.在准备好的

4、三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。2、在折痕(即平分线)上任意找一点C,3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。4、将纸打开,新的折痕与OB边交点为E。角平分线的性质:角平分线上的点到角的两边的距离相等.下面用我们学过的知识证明发现:如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。求证:OE=OD。随堂练习课本练习.补充练习.练后总结:平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB也垂直.课时小结本节课中我们利用已学过的三角形全等的知识,探究得到了角

5、平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,并进一步探究到角平分线的性质.课后作业课本习题11.3第1、2、3题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。