2015年重庆市高考数学试卷(理科)答案与解析.doc

2015年重庆市高考数学试卷(理科)答案与解析.doc

ID:48906633

大小:180.65 KB

页数:6页

时间:2020-02-05

2015年重庆市高考数学试卷(理科)答案与解析.doc_第1页
2015年重庆市高考数学试卷(理科)答案与解析.doc_第2页
2015年重庆市高考数学试卷(理科)答案与解析.doc_第3页
2015年重庆市高考数学试卷(理科)答案与解析.doc_第4页
2015年重庆市高考数学试卷(理科)答案与解析.doc_第5页
资源描述:

《2015年重庆市高考数学试卷(理科)答案与解析.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2015年重庆市高考数学试卷(理科)参考答案与试题解析 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.5.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为(  ) A.B.C.D.8.(5分)(2015•重庆)已知直线l:x+ay﹣1=0(a∈R)是圆C:x2+y2﹣4x﹣2y+1=0的对称轴.过点A(﹣4,a)作圆C的一条切线,切点为B,则

2、AB

3、=(  ) A.2B.C.6D.9.(5分)(2015•重庆)若tanα=2tan,则=(  ) A.1B.2C.3D.4

4、10.(5分)(2015•重庆)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是(  ) A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣,0)∪(0,)D.(﹣∞,﹣)∪(,+∞) 二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.13.(5分)(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC

5、= 三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.15.(5分)(2015•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为6,则直线l与曲线C的交点的极坐标为 (2,π) .  四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.18.(13分)(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.20.(12分)(2015

6、•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围. 21.(12分)(2015•重庆)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若

7、PF1

8、=2+

9、=2﹣,求椭圆的标准方程;(Ⅱ)若

10、PF1

11、=

12、PQ

13、,求椭圆的离心率e.632015年重庆市高考数学试卷(理科)参考答案与试题解析解答:解:由三视图可知,几何体是组合体,左侧是三棱锥,底

14、面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.8解答:解:圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2=4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).由于AC==2,CB=R=2,∴切线的长

15、AB

16、===6,故选:C.9:解:tanα=2tan,则=============3.故答案为:3.10解答:解:由题意,A

17、(a,0),B(c,),C(c,﹣),由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,∴c﹣x=,∵D到直线BC的距离小于a+,6∴c﹣x=<a+,∴<c2﹣a2=b2,∴0<<1,∴双曲线的渐近线斜率的取值范围是(﹣1,0)∪(0,1).故选:A.13解答:解:由题意以及正弦定理可知:,即,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2=.故答案为:.15解答:解:直线l的参数方程为(t为参数),它的直角坐标方程为:x﹣y+2=0;曲线C的极坐标方程为,可得它的直

18、角坐标方程为:x2﹣y2=4,x<0.由,可得x=﹣2,y=0,交点坐标为(﹣2,0),它的极坐标为(2,π).故答案为:(2,π).18解答:解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣sin2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.620解答:解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.

19、当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。