欢迎来到天天文库
浏览记录
ID:48783601
大小:659.00 KB
页数:17页
时间:2020-01-24
《《解直角三角形》课件2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4解直角三角形1、在直角三角形中,除直角外共有几个元素?温故知新2、如图,在Rt△ABC中∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?∠A、∠B、边a、b、c直角三角形中元素间的三种关系:(1)两锐角关系:(2)三边关系:(3)边与角关系:∠A+∠B=90ºa2+b2=c2(勾股定理)sinA=cosA=tanA=这里有一株折倒的大树,你能测量后,根据测量结果求出大树的原高度吗?情景导航解直角三角形归纳定义由直角三角形中已知的元素,求出所未知的元素的过程,叫做解直角三角形.例题分析例1在Rt△ABC中,已知∠C=90°,a=17.
2、5,c=62.5.解这个直角三角形.解:由得例题分析例2在Rt△ABC中,∠C=90°,∠A=30°,a=5.解这个直角三角形.解:在Rt△ABC中,∠C=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°.∵sinA=,∴c=∵,∴b=a·tanB=5·tan60°=.例题分析例3在三角形ABC中,AC=8,∠B=45°,∠A=30°.求AB.解:过点C作CD⊥AB,垂足为D.在Rt△ADC中,AD=AC·cos30°=8×=4,CD=AC·sin30°=8×=4.在Rt△BCD中,∵∠B=45°,∴BD=CD=4.∴AB=AD+DB=在
3、直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么三角形的所有元素就都可以确定下来.小结你发现了吗?结论猜想猜想归纳,解直角三角形的类型:1、已知两条边:2、已知一边一角:(1)两直角边(2)一直角边和斜边(1)一直角边和一锐角(2)斜边和一锐角在下列直角三角形中不能求解的是()A、已知一直角边一锐角B、已知一斜边一锐角C、已知两边D、已知两角D随堂练习在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,根据下列条件,求出这个三角形的其他元素.(1)已知a=4,c=8;(2)已知b=10,∠B=60°;(3)已
4、知c=20,∠A=60°.∠A=30°∠B=60°b=4∠A=30°∠B=30°随堂练习1.在△ABC中,∠C=90°,b=30,c=40,解直角三角形.∠A=41.4°∠B=48.6°小练习CBA┓abc2.△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,Ⅰ.a=6,sinA=,求b,c,tanA;Ⅱ.a+c=12,b=8,求a,c,sinB.Ⅰ.b=c=15Ⅱ.CBA┓abc如图,在Rt△ABC中,∠C为直角,其余5个元素之间有以下关系:(1)三边之间关系:(勾股定理).(2)锐角之间的关系:∠A+∠B=90°(直角三角形的两个锐角互
5、余).(3)边角之间的关系:【课堂小结】AcbaCB解直角三角形2、解直角三角形应注意的问题:(1)正确运用直角三角形中的边角关系;(2)同时要注意运用勾股定理、代数式的变形及方程思想(以后用到).1、概念:由直角三角形中已知的元素,求出所未知的元素的过程,叫做解直角三角形.谢谢欣赏!
此文档下载收益归作者所有