《椭圆的几何性质》课件1.ppt

《椭圆的几何性质》课件1.ppt

ID:48783041

大小:521.50 KB

页数:17页

时间:2020-01-24

《椭圆的几何性质》课件1.ppt_第1页
《椭圆的几何性质》课件1.ppt_第2页
《椭圆的几何性质》课件1.ppt_第3页
《椭圆的几何性质》课件1.ppt_第4页
《椭圆的几何性质》课件1.ppt_第5页
资源描述:

《《椭圆的几何性质》课件1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、椭圆的几何性质2021/10/71复习:1.椭圆的定义:到两定点F1、F2的距离和为常数(大于

2、F1F2

3、)的点的轨迹叫做椭圆。2.椭圆的标准方程是:3.椭圆中a,b,c的关系是:a2=b2+c22021/10/72椭圆简单的几何性质一、范围:-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab2021/10/73YXOP(x,y)P2(-x,y)P3(-x,-y)P1(x,-y)关于x轴对称关于y轴对称关于原点对称二、椭圆的对称性2021/10/74从图形上看,椭圆关于x轴、y轴、原点对称。从方程上看:(1)把x

4、换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。即标准方程的椭圆是以坐标轴为对称轴,坐标原点为对称中心的。2021/10/75三、椭圆的顶点令x=0,得y=?说明椭圆与y轴的交点?令y=0,得x=?说明椭圆与x轴的交点?*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。a、b分别叫做椭圆的长半轴长和短半轴长。oyB2B1A1A2F1F2cab(0,b)(a,0)(0,-b)(-a,0)2021/1

5、0/76123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A12021/10/77四、椭圆的离心率oxy离心率:椭圆的焦距与长轴长的比:叫做椭圆的离心率。[1]离心率的取值范围:因为a>c>0,所以0

6、一个量。2021/10/78标准方程图象范围对称性顶点坐标焦点坐标半轴长焦距a,b,c关系离心率

7、x

8、≤a,

9、y

10、≤b

11、x

12、≤b,

13、y

14、≤a关于x轴、y轴成轴对称;关于原点成中心对称。(a,0),(0,b)(b,0),(0,a)(±c,0)(0,±c)长半轴长为a,短半轴长为b.焦距为2c;a2=b2+c22021/10/79例1已知椭圆方程为16x2+25y2=400,108680分析:椭圆方程转化为标准方程为:a=5b=4c=3oxyoxy它的长轴长是:。短轴长是:。焦距是。离心率等于:。焦点坐标是:。顶点坐标是:。外切矩形的面积等于:。2021/10/71

15、0已知椭圆方程为6x2+y2=6它的长轴长是:。短轴是:。焦距是:.离心率等于:。焦点坐标是:。顶点坐是:。外切矩形的面积等于:。2练习1.2021/10/711例2椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置椭圆的标准方程为:;椭圆的标准方程为:;解:(1)当为长轴端点时,,,(2)当为短轴端点时,,,综上所述,椭圆的标准方程是或2021/10/712已知椭圆的离心率,求的值由,得:解:当椭圆的焦点在轴上时,,,得.当椭圆的焦点在轴上时,,,得.由,得,即.∴满足条件的或.练习2:2021/10/71

16、3目标测试1、在下列方程所表示的曲线中,关于x轴,y轴都对称的是()(A)(B)(C)(D)2、椭圆以坐标轴为对称轴,离心率,长轴长为6,则椭圆的方程为()(A)(B)(C)(D)或或DC2021/10/714小结:oxyB1(0,b)B2(0,-b)A1A2{1}范围:-a≤x≤a,-b≤y≤b{2}椭圆的对称性:关于x轴、y轴、原点对称{3}椭圆的顶点(-a,0)(a,0){4}椭圆的离心率:2021/10/715作业课本第46.47,48页练习题、习题能力培养2021/10/716谢谢!2021/10/717

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。