回顾与思考 (4).ppt

回顾与思考 (4).ppt

ID:48667797

大小:293.50 KB

页数:11页

时间:2020-01-24

回顾与思考 (4).ppt_第1页
回顾与思考 (4).ppt_第2页
回顾与思考 (4).ppt_第3页
回顾与思考 (4).ppt_第4页
回顾与思考 (4).ppt_第5页
资源描述:

《回顾与思考 (4).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章因式分解复习课1、举例说明什么是分解因式。2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。旧知回顾把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。分解因式方法提公因式法运用公式法整式乘法互为逆运算如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。平方差公式完全平方公式知识点一:对分解

2、因式概念的理解例1.下列式子从左到右的变形是不是分解因式不是没有化成几个整式的积的形式;是运用完全平方公式;是运用平方差公式不是没有化成几个整式的积的形式.针对练习知识点二:利用提公因式法分解因式例2.把下列各式分解因式⑴解:原式⑵解:原式公因式既可以是单项式,也可以是多项式,需要整体把握。例3.把下列各式分解因式⑴⑵解:原式解:原式⑶⑷解:原式解:原式知识点三:利用公式法分解因式可以先化简整理,再考虑用公式或其它方法进行因式分解。知识点四:综合运用多种方法分解因式例4.把下列各式分解因式⑴⑵解:原式解:原式⑶⑷解:原式解:原

3、式先观察是否有公因式,若有公因式提出后看是否具有平方差公式或完全平方公式特征,若有使用公式法;若都没有,则考虑将多项式进行重新整理或分组后进行分解因式。知识点五:运用分解因式进行计算和求值例5.利用分解因式计算⑴⑵解:原式解:原式⑶解:原式知识点六:分解因式的实际应用例6.如图,在一个半径为R的圆形钢板上,机械加工时冲去半径为r的四个小圆.(1)用代数式表示剩余部分的面积;(2)用简便方法计算:当R=7.5,r=1.25时,剩余部分的面积.(2)当R=7.5,r=1.25时,S=πR2–4πr2=π(R+2r)(R–2r)=π

4、(7.5+2×1.25)(7.5–2×1.25)=π×10×5=50π解:(1)S=πR2–4πr2能力提升练一练1.当x取何值时,x2+2x+1取得最小值?2.当k取何值时,100x2-kxy+49y2是一个完全平方式?1.解:x2+2x+1=(x+1)2当x=-1时,x2+2x+1取得最小值0。2.解:100x2-kxy+49y2=(10x)2-kxy+(7y)2所以k=±2×10×7=±140作业完成书上习题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。