欢迎来到天天文库
浏览记录
ID:48424384
大小:974.00 KB
页数:24页
时间:2020-01-19
《数学人教版九年级下册28.2.1解直角三角形.2解直角三角形(1)课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§28.2解直角三角形(1)解决有关比萨斜塔倾斜的问题.设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m问:倾斜角∠A是多少?所以∠A≈5.48°ABCABC问题1.直角三角形中,除直角外还有几个元素呢?解直角三角形ABabcC一,解直角三角形定义:在直角三角形中,由除直角外的已知元素求其他未知元素的过程.这五个元素有什么关系呢?(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系(1)三边之间的关系(勾股定理)ABabcC关系:问题2:知道
2、5个元素当中几个,就可以求其他元素?1.已知两条边:2已知一边一角:⑴两直角边⑵一直角边和斜边⑴一直角边和一锐角⑵斜边和一锐角猜想归纳,解直角三角形的类型:例1如图,在Rt△ABC中,∠C=90°,解这个直角三角形解:ABC例2如图,在Rt△ABC中,∠B=30°,b=20,解这个直角三角形(精确到0.1)解:∠A=90°-∠B=90°-35°=55°ABCabc2030°你还有其他方法求出c吗?变式练习1如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC的平分线,求直角三角形的面积。DABC62如图,在电线杆上离地面高度5m的C点处引两根拉线固定电线杆,
3、一根拉线AC和地面成60°角,另一根拉线BC和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示)解直角三角形∠A+∠B=90°a2+b2=c2三角函数关系式类型两边一边一角归纳小结解直角三角形:由已知元素求未知元素的过程直角三角形中,AB∠A的对边aC∠A的邻边b┌斜边c在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(1)a=30,b=20;练习解:根据勾股定理ABCb=20a=30c在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;(2)∠B=72°,c=14.ABCbac=14解:解决有关比萨斜塔倾斜的问题.设塔顶中心点为B
4、,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m所以∠A≈5°28′可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.你愿意试着计算一下吗?ABCABC1.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°520mABCED∴∠BED=∠ABD-∠D=90°答:开挖点E离点D332.8m正好能使A,
5、C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角2.如图所示,一棵大树在一次强烈的地震中于离地面10米处折断倒下,树顶落在离树根24米处.大树在折断之前高多少?解利用勾股定理可以求出折断倒下部分的长度为:26+10=36(米).答:大树在折断之前高为36米.3.如图,太阳光与地面成60度角,一棵倾斜的大树AB与地面成30度角,这时测得大树在地面上的影长为10m,请你求出大树的高.ABC30°地面太阳光线60°10AB的长D(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系(1)三边之间的关系(勾股定理)ABabcC在解直角
6、三角形的过程中,一般要用到下面一些关系:复习30°、45°、60°角的正弦值、余弦值和正切值如下表:锐角a三角函数30°45°60°sinacosatana对于sinα与tanα,角度越大,函数值也越大;(带正)对于cosα,角度越大,函数值越小。问题:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?这样的问题怎么解决问
7、题(1)可以归结为:在Rt△ABC中,已知∠A=75°,斜边AB=6,求∠A的对边BC的长.问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度.因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m所以BC≈6×0.97≈5.8由计算器求得sin75°≈0.97由得ABαC对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6,求锐角a的度数由于利用计算器求得a≈66°因此当梯子底墙距离墙面2.4m时,梯子与地面所成的角大约是66°由5
8、0°<66°<75°可知
此文档下载收益归作者所有